My group's interests involve strongly-correlated quantum many-body systems, with a focus on emergent phenomena, novel phases and phase transitions, quantum criticality, and entanglement. We emphasize computational methods as a theoretical technique, in particular the development of state-of-the-art algorithms for the study of strongly-interacting systems. Our work has employed Monte Carlo simulations, density matrix renormalization group, and modern machine learning methods.
With these techniques, my group explores low-energy physics in quantum magnets, cold atoms in optical lattices, bosonic fluids, and quantum computers. I am particularly interesting in studying microscopic models that display interesting quantum behavior in the bulk, such as superconducting, spin liquid, topological, or error-correcting phases. We are also interested in broader ideas in computational physics, the development of efficient algorithms for simulating quantum mechanical systems on classical computers, and the relationship of these methods to the fields of machine learning and quantum information science.