- Home »
- Quantum computational phases of matter: measurement-based quantum computing in the Haldane phase

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

09110025

A recent breakthrough in quantum computing has been the realization that quantum computation can proceed solely through single-qubit measurements on an appropriate quantum state. One exciting prospect is that the ground or low-temperature thermal state of an interacting quantum many-body system can serve as such a resource state for quantum computation. The system would simply need to be cooled sufficiently and then subjected to local measurements. It would be unfortunate, however, if the usefulness of a ground or low-temperature thermal state for quantum computation was critically dependent on the details of the system's Hamiltonian; if so, engineering such systems would be difficult or even impossible. A much more powerful result would be the existence of a robust ordered phase which is characterized by the ability to perform measurement-based quantum computation. I’ll discuss some recent results on the existence of such a computational phase of matter. I’ll first outline some positive results on a phase of a toy model that contains the cluster state. Then, in a realistic model of coupled spin-1 particles, I’ll demonstrate the existence of a computational phase. This result is obtained by using a local measurement sequence to “renormalize” the state to a computationally-universal fixed point. Together, these results reveal that the characterization of computational phases of matter has a rich, complex structure – one which is still poorly understood. Joint work with Gavin Brennen, Akimasa Miyake, and Joseph Renes.

©2012 Perimeter Institute for Theoretical Physics