A new probe of primordial magnetic fields at high redshift



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
16060011

Abstract

I will present a novel method for probing extremely weak large-scale magnetic fields in the intergalactic medium prior to the epoch of reionization. This method relies on the effect of spin alignment of hydrogen atoms in a cosmological setting, and on the effect of magnetic precession of the atoms on the statistics of the 21–cm brightness–temperature fluctuations. It is intrinsically sensitive to magnetic fields weaker than 10^{-19} Gauss in physical units, and thus has a potential to reach many orders of magnitude below the current constraints on primordial magnetic fields. I will discuss the physical mechanism, lay out the estimator formalism that enables searches with future 21-cm tomographic surveys, and present forecasts for detecting magnetic fields in the high-redshift universe using this method.