Playing this video requires the latest flash player from Adobe.
Download link (right click and 'save-as') for playing in VLC or other compatible player.
Koszul duality, as conceived by Beilinson-Ginzburg-Soergel, describes a remarkable symmetry in the representation theory of Langlands dual reductive groups. Geometrically, Koszul duality can be stated as an equivalence of categories of mixed (motivic) sheaves on flag varieties. In this talk, I will argue that there should be an an 'ungraded' version of Koszul duality between monodromic constructible sheaves and equivariant K-motives on flag varieties. For this, I will explain what K-motives are and present preliminary results.