CDT without preferred foliation

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Download Video

Recording Details

Scientific Areas: 
PIRSA Number: 


Causal dynamical triangulations (CDT) define a nonperturbative path integral for quantum gravity as a sum over triangulations. Causality is enforced on the kinematical level by means of a preferred

In this talk I present a new model of dynamical triangulations based on Lorentzian building blocks, where the triangulations in general do not have such a preferred foliation. The essential ingredients of the new model are a local causality constraint and a consistency condition on the global flow of time. After a compact review on CDT I discuss the theoretical aspects of the new model in 1+1 and 2+1 dimensions, followed by a presentation of numerical results in 2+1 dimensions. These results show that the new model and CDT have similar long-distance properties in 2+1 dimensions.