AKSZ quantization of shifted Poisson structures

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


One of the key constructions in the PTVV theory of shifted symplectic structures is the construction, via transgression, of a shifted symplectic structure on the derived mapping stack from an oriented manifold to a shifted symplectic stack vastly generalizing the AKSZ construction (which was formulated in the context of super manifolds). I will explain local-to-global approach to this construction, which also generalizes the construction to shifted Poisson structures and shows that the AKSZ/PTVV construction is compatible with quantization in a strong sense. One pleasant consequence is that every deformation quantization problem reduces to a version of BV-quantization. Time permitting, I will describe several geometric applications of the theory.