Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will present a hydrodynamic description of matter in a charge density wave (or "smectic") phase. As in superfluids, the spontaneous breaking of a continuous symmetry -- here translations in one direction -- adds a Goldstone phase to the usual long lived hydrodynamic variables. This phase propagates as a highly anisotropic "second sound" mode at low energies, affecting properties such as transport. Phase fluctuations, due to proliferating dislocations, give a finite life-time to certain collective modes, which can be experimentally probed e.g.
In 2014 Hartnoll proposed that the diffusion constants of incoherent metals should be bounded as $ D \geq \hbar v^2/ (k_B T)$, where v is a characteristic velocity. In this talk I will describe a large class of holographic theories that saturate such a bound, with $v$ being the velocity of the butterfly effect. Our results suggest a novel connection between transport at strong coupling and the field of quantum chaos.
Non-relativistic geometries that violate hyperscaling have been used as holographic laboratories for probing strongly coupled phases with anomalous scalings. In this talk I will discuss holographic computations of DC conductivities in gravitational systems that exhibit such scalings, and allow for momentum dissipation. I will also comment on the cases in which one obtains a linear temperature dependence for the resistivity.
This talk, based on work with Brian Swingle, will describe the s-sourcery program.
Its goal is to extend the lessons of the renormalization group to quantum many body states.