Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Weight enumerators, quantum MacWilliams identity, quantum shadow enumerator, higher-dimensional Pauli group, stabilizer codes for qudits
Generators of symplectic group, quantum Gilbert-Varshamov bound, quantum Hamming bound, quantum Singleton bound
The duality between theories of quantum strings and Yang-Mills gauge theories, in particular the AdS/CFT conjecture, has over the years given rise to many important physical insights. Recently, the realization that both sides of the duality, in certain limits, can be be described by integrable systems has lead to a good deal of progress. In this talk we will review the construction of these integrable structures and their usefulness in understanding strings in curved backgrounds/strongly coupled gauge theories.
I first summarize how the recent avalanche of precision measurements involving the cosmic microwave background, galaxy clustering, the Lyman alpha forest, gravitational lensing, supernovae Ia and other tools probes has transformed our understanding of our universe. I then discuss key open problems such as the nature of dark matter, dark energy and the early universe.
Graduate Course on Standard Model & Quantum Field Theory
With a cosmic flight simulator, we'll take a scenic journey through space and time. After exploring
our local Galactic neighborhood, we'll travel back 13.7 billion years to explore the Big Bang itself and
how state-of-the-art measurements are transforming our understanding of our cosmic origin and ultimate fate.
We then turn to the question of whether this can all be described purely mathematically, and discuss
implications ranging from standard physics topics like symmetries, irreducible representations, units,
Graduate Course on Standard Model & Quantum Field Theory
Guest lecturer Robert Raussendorf: graph states
Guest lecturer Raymond Laflamme: experimental quantum error correction
TBA