Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Twenty-first century finance is built on complex mathematical tools developed by “quants,” a different breed of investor with expertise in fields such as physics, mathematics, and computer science. These models have been the basis for both new trading strategies and new financial products, leading to untold wealth. In some cases, however, these models have done more damage than good, making markets less stable and introducing new systemic risk. In this talk, Dr.
Cold dark matter provides a remarkably good description of cosmology and astrophysics. However, observations connected with small scales might be in tension with this framework. In particular, structure formation simulations suggest that the density profiles of dwarf spheroidal galaxies should exhibit cusps, in contrast to observations.
Astrophysical black hole candidates, although long thought to have a horizon, could be horizonless ultra-compact objects. This intriguing possibility is motivated by the black hole information paradox and a plausible fundamental connection with quantum gravity. In this talk I will consider the asymptotically free quadratic gravity as the UV completion of general relativity. Using a classical theory that captures its main features, we find that sufficiently dense matter produces a novel horizonless solution, the 2-2-hole.
I will discuss how Costello's inductive renormalization
procedure for the construction of effective field theories can be
extended to manifolds with boundary.