Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
TBA
TBA
class 3 part 2
Class 3
The progress in neutrino physics over the past ten years has been
tremendous: we have learned that neutrinos have mass and change flavor. I will pick out one of the threads of the story-- the measurement of flavor oscillation in neutrinos produced by cosmic ray showers in the atmosphere, and its confirmation in long distance beam experiments. I will present the history, the current state of knowledge, and how the next generation of high intensity beam experiments will address some of the remaining puzzles.
We introduce a framework that allows to calculate cosmological perturbations in a gauge invariant manner to any order. The two main features of this framework are to take physical observables as basic objects and to treat the variables describing the background geometry as fully dynamical. Backreaction effects can therefore naturally adressed. At the end I will mention applications to Loop Quantum Cosmology.
Class 2 part 2
Class 2
I will survey recent feasibility results on building multi-party cryptographic protocols which manipulate quantum data or are secure against quantum adversaries. The focus will be protocols for secure evaluation of quantum circuits. Along the way, I'll discuss how quantum machines can (and can't) prove knowledge of a secret to a distrustful partner. The talk is based on recent unpublished results, as well as older joint work with subsets of Michael Ben-Or, Claude Crepeau, Daniel Gottesman, and Avinatan Hasidim (STOC '02, FOCS '02, Eurocrypt '05, FOCS '06).
Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach.