Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The D0 Collaboration recently reported a 3.2sigma deviation from the standard model prediction in the like-sign dimuon asymmetry. I will discuss the implications of this anomaly assuming that new physics contributes only to B_{d,s} mixing. The data allow universal new physics with similar contributions relative to the SM in the B_d and B_s systems, but favors a larger deviation in B_s than in B_d mixing. The general minimal flavor violation framework with flavor diagonal CP violating phases can account for the former and remarkably even for the latter case.
Graphene-like materials provide a unique opportunity to explore quantum-relativistic phenomena in a condensed matter laboratory. Interesting phenomena associated with the internal degrees of freedom, spin and valley, including quantum spin-Hall effect, have been theoretically proposed, but could not be observed so far largely due to disorder and density inhonogeneity. We show that weak magnetic field breaks the symmetries that protect flavor (spin, valley) degeneracy, and induces large bulk non-quantized flavor-Hall effect in graphene.