Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Put two physicists in a room and ask them to talk about the interpretation of quantum mechanics. This is a recipe for disagreement; the mysteries of quantum theory run so deep that it
The gauge mediation models with a gravitino mass in the eV range is a
quite attractive scenario which causes no cosmological/astrophysical problems.
The model construction with such a light gravitino is, however, quite challenging
and in most cases ends up with the problems with the suppressed gaugino mass,
the vacuum instability and the Landau pole problems of the Standard Model gauge
coupling constants.
Many results have been recently obtained regarding the power of hypothetical closed time-like curves (CTC’s) in quantum computation. Most of them have been derived using Deutsch’s influential model for quantum CTCs [D. Deutsch, Phys. Rev. D 44, 3197 (1991)]. Deutsch’s model demands self-consistency for the time-travelling system, but in the absence of (hypothetical) physical CTCs, it cannot be tested experimentally. In this paper we show how the one-way model of measurement-based quantum computation (MBQC) can be used to test Deutsch’s model for CTCs.
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to
systematically calculate the entropy, index and other physical observables of an extremal black hole taking into
account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same
quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$
correspondence.
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to
systematically calculate the entropy, index and other physical observables of an extremal black hole taking into
account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same
quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$
correspondence.
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to systematically calculate the entropy, index and other physical observables of an extremal black hole taking into account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$ correspondence.
The headline result of this talk is that, based on plausible complexity-theoretic assumptions, many properties of quantum channels are computationally hard to approximate. These hard-to-compute properties include the minimum output entropy, the 1->p norms of channels, and their "regularized" versions, such as the classical capacity.
In this talk I will describe how random matrix theory and free probability theory (and in particular, results of Haagerup and Thorbjornsen) can give insight into the problem of understanding all possible eigenvalues of the output of important classes of random quantum channels. I will also describe applications to the minimum output entropy additivity problems.
In this talk we will explain how the main step technical steps in the proofs by Hastings and Hayden-Winter of the non-additivity of the minimal output von Neumann and $p$-Renyi entropy (for any $p>1$) can be reduced to a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies. This substantially simplifies their analysis, at least on the conceptual level, and provides an alternative point of view on these and related questions.
Joint work with G. Aubrun and E. Werner
In 2008 Hastings reported a randomized construction of channels violating the minimum output entropy additivity conjecture. In this talk we revisit his argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument.