Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The strategic contribution establishes the BMO Financial Group Isaac Newton Chair in Theoretical Physics at Perimeter Institute,
and represents the largest single donation ever made by BMO to support
science. It is also the largest corporate donation received by PI in its
ten-year history.
The counter-intuitive phenomena in quantum mechanics are often based on the counter-factual (or virtual) processes. The famous example is the Hardy paradox, which has been recently solved in two independent experiments. Also, the delayed choice experiment and one of quantum descriptions of the closed time like curves can be also examples of the counter-intuitive phenomena. The counter-factual processes can be characterized by the weak value initiated by Yakir Aharonov and his colleagues.
AdS/CFT has proven itself a powerful tool in extending our understanding of strongly coupled quantum theories. While studies of AdS/CFT have predominantly focused on tree level calculations, there has been growing interest in the loop effect recently. We studied the 1-loop correction to the gauge boundary-to-boundary correlator due to its coupling to a complex scalar field. In this talk, I would outline our main results, explain the Cutkosky rule in AdS space, and discuss an extra divergence we found in both real and imaginary part of the loop integral.
Check back for details on the next lecture in Perimeter's Public Lectures Series