Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will discuss the various sources of non-Gaussianity (NG) in a class of multi-field models of inflation. I will show that there is both an intrinsic and a local contribution to the NG although they both have the same shape. It is also possible in this class of models that the dominant part to the 3-pt function comes from loop diagrams. These models are of the hybrid type and while they occur naturally in string theory, the conditions for the NG to be important are not generic.
We report on recent progress in understanding string compactifications to four dimensions, preserving minimal supersymmetry. We develop a general formalism to construct the kinetic terms of the low energy degrees of freedom. At strong warping, new light Kaluza-Klein modes appear, which change the effective action for the complex and Kahler moduli. We explain how to determine these new fields starting from 10d, and find their couplings to the zero mode sector.
In two dimensional CFTs the Zamolodchikov\'s c-theorem is fundamental in that it shows that the number of degrees of freedom decreases along the renormalization group flow. I will give a short history of and discuss recent developments in the quest to find its four-dimensional analogue using the central charges a & c.
There is an ongoing debate in the literature concerning the effects of averaging out inhomogeneities (``backreaction\'\') in cosmology. In particular, it has been suggested that the backreaction can play a significant role at late times, and that the standard perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes nonlinear.
Non-Gaussianity is a powerful observable that may reveal important properties of the fundamental physics of inflation, with qualitative and quantitative features of higher order correlation functions distinguishing between models. Here I will discuss the structure of correlation functions in the most general single field inflation model and explain why this information is important for making use of observations from the CMB and large scale structure.
Despite over 40 years of research on Bell-type inequalities and the question of non-locality, new technical results that have general foundational relevance can still be obtained. In this talk will present a number of new results that deal with the question of how to discern local, quantum and no-signaling correlations. • 1) I will present a non-trivial no-signaling inequality that discerns no-signaling correlations from general correlations - the first to our knowledge. This inequality has a striking similarity with the CHSH inequality, yet it is crucially different.
Quantum Field Theory I course taught by Volodya Miransky of the University of Western Ontario
We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called \'string landscape\', physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understsood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.
The efficient computation of scattering amplitudes in quantum field theory has many important applications, ranging from the computation of QCD backgrounds at the LHC to the study of the perturbative finiteness of N=8 supergravity. \'On-shell methods\' are a crucial ingredient in the computation of gauge theory and gravity amplitudes because they are far more efficient than traditional Feynman diagram techniques. I give an introduction to the basic concepts used in this field.