Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In this talk we quickly review the basics of the modal "toy model" of quantum theory described by Schumacher in his September 22 colloquium at PI. We then consider how the theory addresses more general open systems. Because the modal theory has a more primitive mathematical structure than actual quantum mechanics, it lacks density operators, positive operator measurements, and completely positive maps.
If dark matter consists of a multiplet with small mass splittings, it is possible to simultaneously account for DAMA/CoGeNT hints of direct detection and the INTEGRAL 511 keV gamma ray excess from the galactic center; such dark matter must be in the 4-12 GeV mass range. I present scenarios where the DM transforms under a hidden SU(2) that can account for these observations. These models can be tested in low-energy beam dump experiments, like APEX. To explain PAMELA/Fermi excess electrons from dark matter annihilations, heavier TeV scale DM is required.
This talk will focus on hypermultiplet moduli spaces of various N=2 supersymmetric gauge theories in (3+1)d. In the first part of the talk, we discuss the moduli space of instantons on C^2. For the classical groups, the ADHM construction of the moduli space can be realised on the Higgs branch of N=2 gauge theories on D3-branes probing D7-branes. No known construction is available for exceptional groups.
The question of the existence of gravitational stress-energy in general relativity has exercised investigators in the field since the very inception of the theory. Folklore has it that no adequate definition of a localized gravitational stress-energetic quantity can be given. Most arguments to that effect invoke one version or another of the Principle of Equivalence. I argue that not only are such arguments of necessity vague and hand-waving but, worse, are beside the point and do not address the heart of the issue.
Check back for details on the next lecture in Perimeter's Public Lectures Series