Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday Apr 27, 2011
Speaker(s): 

One of the key features of the quantum Hall effect (QHE) is the fractional charge and statistics of quasiparticles. Fractionally charged anyons accumulate non-trivial phases when they encircle each other. In some QHE systems an unusual type of particles, called non-Abelian anyons, is expected to exist. When one non-Abelian particle makes a circle around another anyon this changes not only the phase but even the direction of the quantum-state vector in the Hilbert space. This property makes non-Abelian anyons promising for fault-tolerant quantum computation.

Scientific Areas: 

 

Wednesday Apr 27, 2011
Speaker(s): 

I will discuss the growth of entanglement under a quantum quench at point contacts of simple fractional quantum Hall fluids and its relation with the measurement of local observables. Recently Klich and Levitov recently proposed that, for a free fermion system, the noise generated from a local quantum quench provides a measure of the entanglement entropy. In this work, I will examine the validity of this proposal in the context of a strongly interacting system, the Laughlin FQH states.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

The spin 1/2 Heisenberg model on a triangular lattice with interchain exchange, J', weaker than the intrachain exchange J, is a particularly well-studied frustrated magnet because of its relevance to Cs2CuCl4, which is thought to be in close proximity to a spin liquid phase. Although an incomensurate spiral state is stable for J'~J, a variet of theoretical studies find evidence for spin liquid behavior well before the decoupled chain limit, J'=0, is reached.

Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

Very recently, it has been recognized that excitations out of the ground state of materials known as spin ice can be viewed as magnetic monopoles, the magnetic analog to electric charges. Like electrons and positrons,
these particles possess a charge of +Q or -Q and therefore attract or repel each other. Magnetic monopoles, however, can be accelerated using a magnetic field instead of an electric field. In this talk, I will report on

Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

We begin with a fundamental approach to quantum mechanics based on the unitary representations of the group of diffeomorphisms of physical space (and correspondingly, self-adjoint representations of a local current algebra). From these, various classes of quantum configuration spaces arise naturally.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

Geometrical frustration in magnetic systems provides a rich playground to study the emergence of novel ground states. In systems where not all magnetic couplings can be simultaneously satisfied, conventional long range magnetic order is often precluded, or pushed to much lower emperature scales than would be expected from the strength of the magnetic interactions. Dy2Ti2O7 has a pyrochlore lattice, where the magnetic Dy ions lie on the vertices of corner sharing tetrahedra.

Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

Utilizing the Baym-Kadanoff formalism with the polarization function calculated in the random phase approximation, the dynamics of the ν=0, ±1, ±2, ±3, ±4 quantum Hall states in bilayer graphene is analyzed. In particular, in the undoped graphene, corresponding to the ν =0 state, two phases with nonzero energy gap, the ferromagnetic and layer asymmetric ones, are found. The phase diagram in the plane (Δ0,B), where Δ0 is

Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

The nature of the pairing mechanism in the recently discoverediron-pnictide family of superconductors remains an outstanding issue. To answer this question, it is instructive to know the symmetry of the superconducting energy gap. Low temperature thermal conductivity measurements provide a robust test of the presence or absence of low energy electronic quasiparticles that in turn can be used to characterise the symmetry of the gap function.

Scientific Areas: 

 

Tuesday Apr 26, 2011
Speaker(s): 

Direct visualization of the electronic structure within each crystalline unit cell of a solid is a new frontier in condensed matter physics (M.J.
Lawler et al, Nature 466, 347 (2010)). In this talk, I will introduce the
techniques of spectroscopic imaging scanning tunneling microscopy (SI-­‐STM) and then explain how our new application of this technique allows
visualization of the intra-­‐unit-­‐cell electronic structure. We use this

Scientific Areas: 

Pages