Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Tuesday Mar 07, 2017
Speaker(s): 

In this talk, I will talk about my current study and the future directions that I am interested to explore, which include: (1) topological phases in cold atom, (2) spin liquid phases in frustrated magnets, (3) strongly interacting conformal field theory, (4) no equilibrium dynamics.  Specifically, I will elaborate on several topics that I plan to work on in the near future: (1) cold atom realization and detection of symmetry protected topological phases,

(2) effect of charge fluctuation in the spin liquid phases, (3) entanglement properties of 3D CFT.

Collection/Series: 
Scientific Areas: 

 

Tuesday Mar 07, 2017
Speaker(s): 

When utilized appropriately, the path-integral offers an alternative to the ordinary quantum formalism of state-vectors, selfadjoint operators, and external observers -- an alternative that seems closer to the underlying reality and more in tune with quantum gravity. The basic dynamical relationships are then expressed, not by a propagator, but by the quantum measure, a set-function $\mu$ that assigns to every (suitably regular) set $E$ of histories its generalized measure $\mu(E)$.

Collection/Series: 
Scientific Areas: 

 

Tuesday Mar 07, 2017
Speaker(s): 

We study the eigenstate thermalization hypothesis in chaotic conformal field theories (CFTs) of arbitrary dimensions by computing the reduced density matrices of small size in energy eigenstates. We show that in the infinite volume limit this operator is well-approximated by a “universal” density matrix which is its projection to the primary operators that have nonzero thermal one-point functions. These operators in all two-dimensional CFTs and holographic higher-dimensional CFTs are the polynomials of stress tensor.

Collection/Series: 
Scientific Areas: 

 

Tuesday Mar 07, 2017

Recently a new solution to the hierarchy problem was proposed which makes use of the cosmological evolution of a light scalar field, a scanner, instead of symmetry or anthropic arguments to select a small Higgs mass. In the original proposal this scanner field could be the QCD axion and thus such class of solution became known as ``relaxion’’.

Collection/Series: 
Scientific Areas: 

 

Tuesday Mar 07, 2017
Speaker(s): 

Pulsars are some of physics and astrophysics’ most exotic objects, and they have already earned two Nobel Prizes. We currently know of about 2500 of them in our Galaxy, but a small subset, the millisecond pulsars (MSPs), are truly remarkable. These systems are notoriously hard to detect, yet their numbers have more than doubled in the past 5 years via surveys using the world’s most sensitive

Collection/Series: 
Scientific Areas: 

Pages