Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Central to quantum theory, the wavefunction is a complex distribution associated with a quantum system. Despite its fundamental role, it is typically introduced as an abstract element of the theory with no explicit definition. Rather, physicists come to a working understanding of it through its use to calculate measurement outcome probabilities through the Born Rule. Tomographic methods can reconstruct the wavefunction from measured probabilities.
Superselection rules in quantum theory assert the impossibility of preparing coherent superpositions of certain conserved quantities. For instance, it is commonly presumed that there is a superselection rule for charge and for baryon number, as well as a "univalence superselection rule" forbidding a coherent superposition of a fermion and a boson. I will show how many superselection rules can be effectively lifted using a reference frame for the variable that is conjugate to the conserved quantity.
We argue that the infinite-dimensional BMS symmetry discovered by Bondi et. al in the 60s provides an exact symmetry of the quantum gravity S-matrix. The Ward identity of this symmetry is shown to be precisely Weinberg's soft graviton theorem, also discovered in the 60s. A parallel infinite-dimensional symmetry is found to be generated in nonabelian gauge theories by gauge transformations which go to an angle-dependent finite constant at null infinity. The Ward identity of this symmetry is shown to be the soft gluon theorem.