Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Thanks to the spectacular observational advances since the 1990s, a `standard model' of the early universe has now emerged. However, since it is based on quantum field theory in curved space-times, it is not applicable in the Planck era. Using techniques from loop quantum gravity, the theory can be extended over the 12 orders of magnitude in density and curvature from the onset of inflation all the way back to the Planck regime, providing us with a possible completion of the standard model.
In holographic duality a gravitational spacetime emerges as an equivalent description of a lower-dimensional conformal field theory (CFT) living on the asymptotic boundary. Traditionally, the dimension not present in the CFT is interpreted in terms of its Renormalisation Group flow. In this talk I exploit the relation between boundary entanglement entropies and bulk minimal surfaces to define a quantitative framework for the holographic Renormalisation Group, in which quantum information theory plays a fundamental role.
The last decade has seen a wave of characterizations of quantum theory using the formalism of generalized probability theory.
In this talk I will propose a general correspondence which associates a non-perturbative quantum mechanical operator to a toric Calabi-Yau manifold, and I will propose a conjectural expression for its spectral determinant. As a consequence of these results, I will derive an exact quantization condition for the operator spectrum. I will give a concrete illustration of this conjecture by focusing on the example of local P2.
With the increase of the center-of-mass energy from 8 TeV
to 13 TeV for LHC Run 2, the probability for boosted topologies will
become even higher than in Run 1. This also comes with a large
increase in pileup from the increased luminosity. This talk
investigates the state of the art of boosted algorithms and grooming
techniques, addresses shortcomings and possible improvements, and
discusses hot-topic items that will be interesting early on in Run 2.