Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will talk about the relation between non-local theories and gravity. The main thesis is that non-local field theories naturally induce gravity, even at the classical level. Supporting this idea, I will study bi-local scalar field theories, which involve minimal deviations from locality. We will treat them both, bi-local theories and gravity perturbatively. We will see that bi-local theories encode gravity together with higher spin fields.
We classify quantum states proximate to the semiclassical Neel state of the spin S=1/2 square lattice antiferromagnet with two-spin near-neighbor and four-spin ring exchange interactions. Motivated by a number of recent experiments on the cuprates and the iridates, we examine states with Z_2 topological order, an order which is not present in the semiclassical limit. Some of the states break one or more of reflection, time-reversal, and lattice rotation symmetries, and can account for the observations. We discuss implications for the pseudogap phase.
On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and field-independent), and in general relativity (where they are field-dependent and dynamic). In this talk, I will erase that distinction. I encode gravity, along with other types of interactions, in the timeless configuration space of spatial fields, with dynamics obtained through a path integral formulation. The framework demands that boundary conditions for this path integral be uniquely given.
I will present results on the quantization of an FRLW model that utilises a Schrodinger-type evolution equation. In contrast to standard Wheeler--DeWitt-type quantisations, the quantum model resolves the classical singularity, exhibits a quantum bounce, and displays novel early-universe phenomenology. A global scale emerges because of a scale anomaly, and suggests an interesting scenario for quantum shape dynamics. I will give the details of the quantization procedure and show how these techniques can be used more generally for anisotropic models.
An overview will be given of recently discovered connection between asymptotic symmetries in general relativity and soft theorems in quantum field theory together with their implications for the black hole information paradox.
I will with simple examples from spatially homogeneous and isotropic cosmology illustrate the importance of respecting the global features of a state space for a given model when reformulating field equations to useful dynamical systems. In particular I will use examples from f(R) gravity and GR with a minimally coupled scalar field.
Abstract TBA
I will show how the intrinsic definition of observables in relativity through dynamical similiarity (known as Shape Dynamics) leads to the continuation of Einstein's equations classically through the big bang singularity in simple cosmological scenarios. By appealing to general principles I argue that this is a generic feature, and that the singularity can be viewed as an artifact of the redundant description imposed by absolute length scales.
I will discuss various ways of realizing the Weyl group in a theory of gravity, and the presence or absence of anomalies.
Check back for details on the next lecture in Perimeter's Public Lectures Series