Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

 

Thursday Dec 03, 2020
Speaker(s): 

In compact astrophysical objects, such as neutron star magnetospheres, black-hole accretion disk coronae and jets, the main energy reservoir is the magnetic field. The plasma processes such as magnetic reconnection and turbulence govern the extraction of that energy, which is then deposited into heat and accelerated particles and, ultimately, the observed emission.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Dec 02, 2020

In her December 2 Perimeter Public Lecture webcast, Hallberg will explore examples of emergent phenomena and demonstrate how we can tackle these problems using quantum information to filter the most relevant data. By advancing research in this field, we hope to seed advances with applications from medical equipment and new materials to efficient energy generation, transportation, and storage.

Collection/Series: 
 

 

Wednesday Dec 02, 2020
Speaker(s): 

I will discuss challenges of quantum gravity, highlighting conceptual, methodological as well as phenomenological aspects. Focusing on asymptotically safe quantum gravity, I will review recent progress in addressing key theoretical challenges using continuum and lattice methods. Furthermore, I will explain how the high predictive power of the asymptotically safe fixed point for quantum gravity and matter might allow us to explain fundamental properties of our universe, for example its dimensionality.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Dec 02, 2020
Speaker(s): 

In string compactifications the roles of physics and geometry are intrinsically intertwined. While the goals of these 4-dimensional effective theories are physical, the path to those answers frequently leads to cutting-edge challenges in modern mathematics. In this talk, I will describe recent progress in characterizing the geometry of Calabi-Yau manifolds in terms their description as elliptic fibrations. This description has remarkable consequences for the form of the string vacuum space and the properties of string effective theories, including particle masses and couplings.

Collection/Series: 
 

 

Tuesday Dec 01, 2020
Speaker(s): 

I will review the numerical approach to testing gauge/gravity duality using matrix models. This will lead to a summary of recent results from the BFSS, BMN and Berkooz-Douglas matrix models and a strong non-perturbative test of gauge/gravity duality.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Dec 01, 2020
Speaker(s): 

One of the puzzles that the newly data-rich fields of cosmology and astrophysics are most advantaged to tackle is the nature of the dark sector.  In particular, a dark sector that thermalizes with the SM bath at some epoch has present-day observable properties that are directly tied to early-universe interactions.

Collection/Series: 
Scientific Areas: 
 

 

Monday Nov 30, 2020
Speaker(s): 

Monitored quantum dynamics has attracted much research attention recently. Environmental monitoring typically leads to the decoherence of a quantum system. We explore the effect of energy-level decoherence in quench dynamics. In particular, we consider the linear quench across quantum critical phase transitions under the influence of decoherence. Due to the critical slowing down, the system will necessarily fall out of equilibrium in the vicinity of the critical point within a time scale known as the freeze-out time.

Scientific Areas: 
 

 

Friday Nov 27, 2020
Speaker(s): 

A priori, there exists no preferential temporal direction as microscopic physical laws are time-symmetric. Still, the second law of thermodynamics allows one to associate the 'forward' temporal direction to a positive variation of the total entropy produced in a thermodynamic process, and a negative variation with its 'time-reversal' counterpart.

Collection/Series: 
Scientific Areas: 

Pages