This series consists of talks in the area of Superstring Theory.
I will discuss a solution generating technique that allows to generate
stationary axisymmetric solutions of five-dimensional gravity, starting
from static ones. This technique can be used to add angular momentum
to static configurations. It can also be used to add KK-monopole charge
to asymptotically flat five-dimensional solutions, thus generating geometries
that interpolate between five-dimensional and four-dimensional solutions.
In this talk, I will describe recent work in string phenomenology from the perspective of computational algebraic geometry. I will begin by reviewing some of the long-standing issues in heterotic model building and the goal of producing realistic particle physics from string theory. This goal can be approached by creating a large class of heterotic models which can be algorithmically scanned for physical suitability. I will outline a well-defined set of heterotic compactifications over complete intersection Calabi-Yau manifolds using the monad construction of vector bundles.
TBA
TBA
TBA
TBA
TBA
TBA
tba
To realize massive pions, I propose a variation of the holographic model of massless QCD using the D4/D8/D8bar-brane configuration proposed by Sakai and Sugimoto. The deformation breaks the chiral symmetry explicitly and I compute the mass of the pions and vector mesons. The observed value of the pion mass can be obtained. I also argue a chiral perturbation corresponding to the deformation.