Perimeter Institute will host an international conference from July 18-21, 2006, in honour of Abner Shimony, one of the most eminent physicist-philosophers of our time. Professor Shimony is renowned for his contribution to the famous Bell-CHSH inequality and for many other contributions in the foundations of physics and philosophy.
Talks and discussions will cover a wide range of subjects within physics and philosophy, including theoretical and experimental aspects of quantum entanglement and non-locality, relativistic causality, quantum measurement problem, probability theory, temporal transience, the mind-body problem, and scientific realism.
Here are some topics in physics and philosophy on which my work is incomplete. I invite my friends in this assembly, and their colleagues and students, to continue the work and inform me about their progress.
In this talk I will discuss the question of how to characterize, in an operationally meaningful way, the inevitable disturbance of a quantum system in a measurement. I will review some well-known limitations of quantum measurements (facts), and give precise formulations of trade-off relations between information gain and disturbance. Famous examples among these limitations are the uncertainty principle, the complementarity principle, and Wigners theorem on limitations on measurements imposed by conservation laws.
Newtons methodology is significantly richer than the hypothetico-deductive model. It is informed by a richer ideal of empirical success that requires not just accurate prediction but also accurate measurement of parameters by the predicted phenomena. It accepts theory mediated measurements and theoretical propositions as guides to research Kuhn has suggested that along with revolutionary changes in scientific theory come revolutionary changes in methodology.
A theory governing the metric and matter fields in spacetime is {\it
Abner Shimony is well-known for, among other contributions, his seminal work on Bell inequalities, turning a philosophical question into an experimental one. In my presentation I like to remind us how this experimental field is nowadays feeding into applied science. This is happening both in terms of the involved technologies and in the conceptual tools.
I will report my efforts to describe elementary Quantum behaviours, specifically single-particle interference and two-particle entanglement, in an accelerating frame.
Entanglement swapping is such a powerful technique for dealing with EPR problems, that it can handle inefficient counters and Bell Theorems without inequalities, even for two particles. We will examine some of the results and pitfalls.
An experimental realization of our spin-1/2 particle version of the Einstein-Podolsky-Rosen (EPR) experiment will be briefly reviewed. In the proposed experiment, two 199Hg atoms in the ground 1S0 electronic state, each with nuclear spin I=1/2, are generated in an entangled state with total nuclear spin zero. Such a state can be obtained by dissociation of a 199Hg2 molecule (dimer) using a spectroscopically selective stimulated Raman process.