This series consists of weekly discussion sessions on foundations of quantum Theory and quantum information theory. The sessions start with an informal exposition of an interesting topic, research result or important question in the field. Everyone is strongly encouraged to participate with questions and comments.
In this talk I'll discuss recent joint work with Raymond Laflamme, David Poulin and Maia Lesosky in which a unified approach to quantum error correction is presented, called "operator quantum error correction". This scheme relies on a generalized notion of noiseless subsystems and includes the known techniques for the error correction of quantum operations --i.e., the standard model, the method of decoherence-free subspaces, and the noiseless subsystem method--as special cases. Correctable codes in this approach take the form of operator algebras and operator semigroups.
One of the central critical results in the theory of fault-tolerant quantum computation is that arbitrarily long reliable computation is possible provided the error rate per gate and per time step is below some threshold value. This was proved by a number of groups, but the detailed published proofs are complex and furthermore only hold for concatenation of quantum error-correcting codes able to correct 2 errors per block, while typically the best estimates of the threshold value are based on the 7-qubit code, which only corrects 1 error per block.