Emmy Noether Workshop: The Structure of Quantum Space Time
I will discuss the application of Siegel paramodular forms to constructing new examples of holography. These forms are relevant to investigate the growth of coefficients in the elliptic genus of symmetric product orbifolds at large central charge. The main finding is that the landscape of symmetric product theories decomposes into two regions. In one region, the growth of the low energy states is Hagedorn, which indicates a stringy dual. In the other, the growth is much slower, and compatible with the spectrum of a supergravity theory on AdS_3.
I'll describe my recent work on black hole seeded vacuum decay, and proposals for testing seeded decay in cold atom experiments. I'll conclude with speculations on seeking insight into quantum black holes via experimentally constructing quantised analog black holes.
After a short introduction to the stochastic GW background I will highlight how one uses currently available LIGO/Virgo/Kagra data not only to learn about compact binaries and the large-scale-structure of our universe, but also to constrain particle physics models beyond the Standard Model, modified gravity proposals, and even quantum gravity theories.
I will discuss a number of ongoing efforts to understand quantum field properties in a manifestly spacetime framework. Entanglement entropy and causal set theory are among the topics that I will especially touch on.
Within a histories-framework for quantum field theory, the condition of \bold{persistence of zero} (PoZ for short) tries to capture (a part of) the elusive idea that no cause can act outside its future lightcone. The PoZ condition, however, does not easily carry over to theories like gravity where the causal structure is not only dynamical but indefinite (subject to quantum fluctuations).
There are three natural currents for Maxwell theory on a non-dynamical background: the stress, Noether and canonical current. Their associated fluxes across null infinity differ by boundary terms for asymptotically flat spacetimes. These boundary terms do not only quantitatively change the behavior of the flux associated with an asymptotic Lorentz symmetry, but also qualitatively: the stress flux contains both radiative and Coulombic information, whereas Noether and canonical ones are purely radiative.
Linking quantum gravity approaches could be important to make progress in quantum gravity. In my talk, I will try to make this case using asymptotically safe gravity as an example. I will briefly review the status of the approach and highlight the open questions, and discuss proposed ideas how the link to other approaches could be useful to tackle these. Finally, I will emphasize the need for universality in quantum gravity, and argue that there might be universal features from quantum gravity in black-hole shadows.
According to general relativity, the coalescence of a compact binary system creates a gravitational wave signal generically described by an inspiral-merger-ringdown waveform. The recent observations of gravitational waves by LIGO allow us to test our theory of gravity in the strong field regime. In binary black hole detections, the ringdown portion of the wave can provide tests of the no-hair theorem, the most stringent proof of the existence of astrophysical black holes and even possible hints of quantum gravity.
In physics, every observation is made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in all practical situations it is a physical system which constitutes a reference frame. Can a quantum system be considered as a reference frame and, if so, which description would it give of the world?