This series consists of talks in the area of Condensed Matter.
We consider rather general spin-1/2 lattices with large coordination numbers Z.
Based on the monogamy of entanglement and other properties of the concurrence C,
we derive rigorous bounds for the entanglement between neighboring spins,
which show that C decreases for large Z. In addition, the concurrence C measures the deviation from mean-field behavior and can only vanish if the mean-field ansatz yields an exact ground state of the Hamiltonian. Motivated by these findings, we propose an improved mean-field ansatz by adding entanglement
We consider the problem of reconstructing global quantum states from local data. Because the reconstruction problem has many solutions in general, we consider the reconstructed state of maximum global entropy consistent with the local data. We show that unique ground states of local Hamiltonians are exactly reconstructed as the maximal entropy state. More generally, we show that if the state in question is a ground state of a local Hamiltonian with a degenerate space of locally indistinguishable ground states, then the maximal entropy state is close to the ground state projector.
In the past few years substantial evidence has been collected that points to coexistence of charge correlations with long range superconductivity in underdoped cuprate superconductors. In this talk I will review some of this evidence, then show that a charge density wave with precisely the same signatures is a natural instability of an antiferromagnetic metal, and finally derive some phenomenological consequences, with special focus on quantum oscillation experiments.
Non-Abelian anyons are widely sought for the exotic fundamental physics they harbor as well as for their possible applications for quantum information processing. Currently, there are numerous blueprints for stabilizing the simplest type of non-Abelian anyon, a Majorana zero energy mode bound to a vortex or a domain wall. One such candidate system, a so-called "Majorana wire" can be made by judiciously interfacing readily available materials; the experimental evidence for the viability of this approach is presently emerging.
We present our recent numerical calculations for the Heisenberg model on the square and
Kagome lattices, showing that gapless spin liquids may be stabilized in highly-frustrated
regimes. In particular, we start from Gutzwiller-projected fermionic states that may
describe magnetically disordered phases,[1] and apply few Lanczos steps in order to improve
their accuracy. Thanks to the variance extrapolation technique,[2] accurate estimations of
the energies are possible, for both the ground state and few low-energy excitations.
The same bulk two-dimensional topological phase can have multiple distinct, fully-chiral edge phases. We show that this can occur in the integer quantum Hall states at fillings 8 and 12 with experimentally-testable consequences. We also show examples for Abelian fractional quantum Hall states, the simplest examples being at filling fractions 8/7, 12/11, 8/15, 16/5. For all examples, we propose experiments that can distinguish distinct edge phases. Our results are summarized by the observation that edge phases correspond to lattices while bulk phases correspond to genera of lattices.
We review the formalism of matrix product states and one of its recent generalisations which allows to variationally determine the dispersion relation of elementary excitations in generic one-dimensional quantum spin chains. These elementary excitations dominate the low energy effective behaviour of the system. We discuss recent work where we show how we can also describe the effective interaction between these excitations – as mediated by the strongly correlated ground state – and how we can extract the corresponding S matrix.