Colloquium

This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Wednesday Mar 09, 2016
Speaker(s): 

In any quantum field theory, the energy flux at a point of spacetime can be negative. This would produce a repulsive gravitational field causing nearby light rays to defocus. This in turn threatens to produce a variety of exotic phenomena including traversable wormholes, warp drives, time machines, and evasion of singularity theorems. I will describe a new "quantum focusing conjecture" that prevents such pathologies. In the flat spacetime limit it reduces to a novel lower bound on the energy density, which can be proven for several classes of field theories.

Collection/Series: 

 

Wednesday Feb 24, 2016
Collection/Series: 

 

Wednesday Feb 17, 2016
Speaker(s): 

Precision atom interferometry is poised to become a powerful tool for discovery in fundamental physics. Towards this end, I will describe recent, record-breaking atom interferometry experiments performed in a 10-meter drop tower that demonstrate long-lived quantum superposition states with macroscopic spatial separations.

Collection/Series: 

 

Wednesday Feb 03, 2016
Speaker(s): 

Radio pulsars are Nature's most perfect clock and hence are useful for precision work on a wide variety of physical and astrophysical topics, ranging from sensitive tests of relativistic gravity to constraining the equation of state of ultradense matter. I will describe current ongoing surveys for radio pulsars using the two largest radio telescopes in the world, and how these surveys are also valuable for searching for Fast Radio Bursts, a newly recognized astrophysical phenomenon of unknown origin.

Collection/Series: 

 

Thursday Nov 12, 2015
Speaker(s): 

In the summer of 2015, the speaker led a team at Microsoft Research, comprised primarily of research interns from seven universities, to demonstrate a social, ambulatory, Mixed Reality system for the first time. Each intern developed a preliminary, domain-specific exploration of how such a system could be used. One of the interns, Andrzej Banburski of the Perimeter Institute, demonstrated an interface to Mathematica.

Collection/Series: 
Scientific Areas: 

 

Wednesday Nov 11, 2015
Speaker(s): 

A quantum entanglement is a special kind of correlation; it may yield a strong correlation that is not possible in a classical ensemble, or hide the correlation from all local observables. Especially important is the entanglement that arises from local interactions for its implications in many-body physics and future’s quantum technologies.

Collection/Series: 

 

Wednesday Nov 04, 2015
Speaker(s): 

Topological phases of matter are phases of matter which are not characterized

by classical local order parameters of some sort. Instead, it is the global properties

of quantum many-body ground states which distinguish one topological phase from

another. One way to detect such global properties is to put the system on a topologically

non-trivial space (spacetime). For example, topologically ordered phases in (2+1)

dimensions exhibit ground state degeneracy which depends on the topology of the spatial manifold.

Collection/Series: 

 

Wednesday Oct 21, 2015
Speaker(s): 

Topological quantum computation is based on the possibility of the realization of some TQFTs in Nature as topological phases of quantum matter. Theoretically, we would like to classify topological phases of matter, and experimentally, find non-abelian objects in Nature. We will discussion some progress for a general audience.


Collection/Series: 

 

Wednesday Sep 23, 2015
Speaker(s): 

Experiments and observations over the last decade and a half have persuaded cosmologists that (as yet undetected) dark energy is by far the main component of the energy budget of the universe. I review a few simple dark energy models and compare their predictions to observational data, to derive dark energy model-parameter constraints and to test consistency of different data sets. I conclude with a list of open cosmological questions.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Aug 12, 2015
Speaker(s): 

After the completion of the Planck satellite, the next most important experiments in cosmology will be about mapping the Large Scale Structures of the Universe. In order to continue to make progress in our understanding of the early universe, it is essential to develop a precise understanding of this system. The Effective Filed Theory of Large Scale Structures provides a novel framework to analytically compute the clustering of the Large Scale Structures in the weakly non-linear regime in a consistent and reliable way.

Collection/Series: 
Scientific Areas: 

Pages