Colloquium

This series covers all areas of research at Perimeter Institute, as well as those outside of PI's scope.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.

 

Tuesday Jun 13, 2017
Speaker(s): 

The modeling of pulsar radio and gamma-ray emission suggests that in order to interpret the observations one needs to understand the field geometry and the plasma state in the emission region. In recent years, significant progress has been achieved in understanding the magnetospheric structure in the limit of abundant plasma supply. However, the very presence of dense plasma everywhere in the magnetosphere is not obvious. Even the region where the observed emission is produced is subject to debate.

Collection/Series: 

 

Wednesday May 31, 2017
Speaker(s): 

Over the past several years, our understanding of topological electronic phases of matter has advanced dramatically.   A paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes.   Interfaces between different topological phases exhibit gapless conducting states that are protected topologically and are impossible to get rid of.   In this talk we will discuss the application of this idea to the quantum Hall effect, topological insulators,  topological superconductors and the quest for Majorana fermions in c

Collection/Series: 

 

Wednesday May 24, 2017
Speaker(s): 

The existence of a deconfined quantum-critical point [1] between the standard antiferromagnet
and a valence-bond solid in 2D S=1/2 quantum magnets has been controversial, in part due to

Collection/Series: 

 

Wednesday May 17, 2017
Speaker(s): 

An overview will be given of recently discovered connection between asymptotic symmetries in general relativity  and soft theorems in quantum field theory together with their implications for the black hole information paradox.

Collection/Series: 

 

Thursday May 11, 2017
Speaker(s): 

I will first show that a number of persistent astrophysical puzzles, including missing pulsars in the galactic center, fast radio bursts, the abundance of r-process elements, and the type Ia supernova progenitor problem, may all be an emerging signature of dark matter. I will address some theoretical implications and new astrophysical phenomena -- for example "quiet kilonovae" and "r-process donuts" -- associated with this dark matter.

Collection/Series: 

 

Wednesday May 10, 2017
Speaker(s): 

Dark matter is all around us, however its particle physics nature is still mysterious. Searches for dark matter have largely focused on candidates with weak scale interactions to the standard model particles, the so-called WIMP paradigm. However, the parameter space of the WIMP paradigm is becoming increasingly constrained by both the LHC and direct detection experiments. Another possibility that is well motivated both theoretically and observationally is to have a dark sector connected with the visible one via a mediator whose coupling to the visible one is tiny.

Collection/Series: 

 

Friday May 05, 2017
Speaker(s): 

The origin and composition of 85% of the matter in the universe is completely unknown. Among several viable options, Weakly Interacting Massive Particles (WIMPs) are motivated dark matter candidates that can be tested by different and complementary search strategies. Crucially, different searches probe WIMP couplings at different energy scales, and such a separation of scales has striking consequences in connecting different experimental probes.

Collection/Series: 

 

Wednesday May 03, 2017
Speaker(s): 

Collisions at the Large Hadron Collider (LHC) are dominated by jets, collimated sprays of particles that arise from quantum chromodynamics (QCD) at high energies. With the remarkable performance of the ATLAS and CMS detectors, jets can now be characterized not just by their overall direction and energy but also by their substructure.

Collection/Series: 

 

Tuesday May 02, 2017
Speaker(s): 

Collection/Series: 

 

Monday May 01, 2017
Speaker(s): 

Many-body entanglement can lead to exotic phases of matter beyond conventional symmetry breaking paradigm. Those exotic phases may contain fractionalized quasiparticles and emergent gauge fields. In this talk,  I will focus on a wide class of long-range entangled phases—quantum spin liquid. In quantum spin liquids, the spins are entangled in some intricate fashion giving rise to interesting physics such as emergent topological field theory and QED3 theory. I will show in detail how such exotic physics can emerge in simple spin systems.

Collection/Series: 

Pages