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ABSTRACT

We analyze a variant of the EPRB experiment within a frame-

work for quantum mechanics that rests on a radical interpreta-

tion of the sum over histories. Within this framework, reality is

(just as classically) a single “history”, e.g. a definite collection

of particles undergoing definite motions; and quantum dynamics

appears as a kind of stochastic law of motion for that history, a

law formulated in terms of non-classical probability-amplitudes.

No state-vectors enter this framework, therefore the problem of

their nonlocal collapse is absent as well.

1published in Found. Phys. Lett. 4: 303–335 (1991)
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1 Introduction

Near the end of the last century certain new forms of matter were discovered, some

of them expected since ancient times, some hardly anticipated at all. Not only were

atoms finally discerned, but particles from a deeper stratum, including electrons and

protons, showed up almost simultaneously. Although the kinematics of these new

particles proved for a time2 to be relatively mundane, their dynamics was from the

outset much more puzzling. In grappling with that puzzle, scientists were led to a

new type of dynamical framework — one in which probability was involved at the

most basic level, but in which the rules of the classical probability calculus did not

apply. In fact the new quantum theory did not refer directly to probabilities at all,

but rather to other constructs, such as wave functions, whose relation to “observable”

probabilities is only indirect. Ever since their appearance, the proper role of these

constructs has been the subject of continuing controversy, as has the closely related

question whether pre-quantum concepts such as the trajectory of a particle continue

to have a place in subatomic physics.

Now the phenomena leading to this new type of dynamics all emerged in laboratory

experiments; and as long as theoretical inquiry remained focused on the understand-

ing of experiments for which the quantum formalism continued to produce adequate

predictions, the attendant conceptual controversy did not need to be resolved in order

for physics to progress. Today, however, things are different for two related reasons.

In the first place electrons and protons were not the only new “substances” found

around 1900. The spacetime metric had also been recognized as a field with a life of

its own; but General Relativity had only provided a classical dynamics for it, not one

consistent with the quantum behavior of the particles and/or other fields with which

the metric is entwined. These days, the “quantum gravity” problem of finding such

a dynamics is in everyone’s mind, and for it the existing quantum framework has at

least to be broadened, if not replaced. In the second place, one of the most important

applications of a theory of quantum gravity would be to understanding the epoch of

the cosmological “big bang”. In that setting there is no real laboratory and certainly

no experimenter, so that the limited set of interpretive rules on which everyone can

agree is inadequate to help us connect up any quantum gravity formalism with the

real world, even supposing that one could be found. A resolution of the philosophi-

2i.e., before pair creations and annihilations were discovered. (The electronic and nu-
clear spins might also be regarded as new aspects of their kinematics. But perhaps spin is
better construed, within the sum-over-histories framework, as a quality of a more dynam-
ical character, namely as a generalized sort of probability-amplitude.)
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cal issues raised by the quantum principle could thus help us in two ways. It might

single out certain approaches to quantum gravity as being more natural than others,

and it might suggest the kind of dynamical questions that will then have meaning in

unfamiliar physical contexts, such as the very early universe.

Now, the central issue in the controversy over the meaning of quantum mechanics

would no doubt be identified differently by different participants. In our view it is

the question, “what is the physical reality underlying the quantum formalism?”. One

extreme response to this question has always been the positivist (or “operationalist”)

dictum that there is no underlying reality, the formalism being no more than an elab-

orate algorithm for predicting what outcomes will be obtained if one performs certain

suitably designed laboratory experiments. However any such view threatens to trap

us immediately in a vicious circle: since our instruments are themselves composed of

subatomic particles, they would thus be composed of symbols whose ultimate inter-

pretation must be sought in the properties of the instruments themselves (cf. [12]).

On the side of practice the operationalist view is also lacking. Even in a laboratory

setting it would be exceedingly difficult to design, construct and calibrate new in-

struments in ignorance of their atomic structure and intended function in interacting

with definite subatomic objects. But how, in reference to quantum cosmology (say),

are we to formulate fertile questions and heuristic guidelines concerning events such

as galaxy formation while dealing not with “the events themselves”, but instead with

the very indirect “traces” they may have left on complicated recording instruments

fabricated billions of years later? Similarly the operationalist dictum is simply mute

on important technical questions like whether quantum gravity should prefer to rest

on the notion of spacetime (as does classical General Relativity) or on the 3+1-notion

of “spacelike hypersurface”, as many workers have believed. Overall, the positivistic

refusal to try to identify any reality underlying “pointer readings” seems to be not

only self-contradictory, but−what is worse−sterile for further scientific progress.

An attitude which is at the other extreme from positivism, in the sense that it

takes the accepted quantum formalism as seriously as possible, holds that the state-

vector ψ really exists, or even that it (or perhaps the density-operator ρ) is the sole

reality. But if you make ψ real then you must admit that its inherently non-local

features are real as well. These features of ψ include first of all, its built-in non-

local correlations of the EPR sort, and secondly, the closely related process of its

“collapse”. Not only is this latter process beyond the comprehension of quantum

mechanics as it now stands,3 but it is hard to imagine how any future account of

3A possible escape would be the so-called “Everett interpretation”, in which the collapse
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it could reconcile its “instantaneous global” character with the Special Relativistic

exclusion of superluminal propagation. In fact the clash with Minkowskian locality

seems to be a very broad one: if ψ is real then “where is it?”, or at least, “how does

the logical ordering implicit in its sequential collapses relate to the causal ordering of

events in Relativistic spacetime?”. While some of these questions may perhaps admit

consistent answers in the context of flat- (or even curved-) space Quantum Field

Theory with external observers,4 they seem to become hopelessly entangled as soon

as the causal structure itself acquires dynamics (as in General Relativity), especially

when external observers must be given up (as in cosmology).

As is often remarked, this kind of issue shows up with particular clarity in (ge-

danken- or actual) experiments of the EPR-Bohm type, which also have the advantage

of proceeding entirely within the realm of experimentally established physics. Any

interpretation of quantum mechanics aiming to be adequate for applications such as

quantum gravity can therefore find a natural test in how it explains the non-local

correlations that are observed in EPR-type settings.

Now the interpretation for which ψ is real and really collapses runs into trouble

here for the reasons just mentioned.5 Firstly, the mathematical nonlocality by means

of which ψ encodes the EPR correlations must now be admitted as present in reality,

even though it can never be detected directly since ψ is not supposed to be measurable.

In addition a further (though related) difficulty appears in connection with collapse.

Not only does a local measurement on one of the particles produce a nonlocal effect on

the entire wave function, but this effect turns out to be observationally undetectable

by any apparatus interacting locally with the second particle. Whether such behavior

can be ultimately compatible with physical locality or Lorentz invariance is open to

doubt. At the very least the imputation of nonlocal effects which can’t actually be

never occurs, but its effects are supposed to be recovered via a more careful analysis of
closed systems in which “measurement-like processes” take place. Among other things,
this approach tends to lead either to the view that “nothing really happens” [1] or to the
view that “everything really happens” [2] (which perhaps is not that different from the
former view).

4For example, the rule, “collapse occurs along the past light cone (in the Heisenberg
picture)”, appears to be consistent.

5And Bell’s inequality shows that any theory formulated in terms of an instantaneous
state evolving in time would encounter the same trouble. Indeed, the trouble shows up
even more glaringly if one adapts Bell’s argument to spin-1 systems, using the results of
Kochen and Specker[10]. In order to use the Kochen-Specker results in the EPR manner,
one needs a scheme for measuring the relevant observables, but this can be accomplished
by means of suitably concatenated Stern-Gerlach analyzers with recombining beams [13].
Then, as Allen Stairs has pointed out [14], even the perfect correlations become impossible
to reproduce, and no reference to probability theory is needed to establish a contradiction
with locality.

4



detected suggests that ψ has an odor of fictitiousness about it.

If, in order to escape these difficulties, we decide that ψ is not real after all, then

we are again faced with the question of finding an interpretation which will identify

microscopic matter with something more than just a collection of pointer readings.

Perhaps the so-called Copenhagen interpretation is a step in this direction, since in

Bohr’s writings the microworld is taken to be real, even if an element of operationalism

is also present. One may also envision entirely different possibilities, including non-

local hidden variables or more subtle options also involving action at distance [3].

However the quantum framework which seems to us the most natural is one in which

reality is taken to be precisely what it was in classical physics: a collection of particle

world-lines, a spacetime field, or whatever, but in any case a “history”.

Although this “sum-over-histories” interpretation of quantum mechanics has ex-

isted for a long time, it seems to have been largely ignored in philosophical discussions

about quantum mechanics. Perhaps one reason is that its measurement theory re-

mains in a rudimentary state [5]; another may be that it has difficulties with fields of

“Grassmann type”;6 and even in a non-relativistic context, it is clumsy in application

to spinning particles. Nevertheless, it has a definite answer to what is real, it sug-

gests definite approaches to quantum gravity [6, 7], and it appears to overcome the

principal conceptual difficulties of other interpretations. In particular, it obviates the

problems with state vector collapse because for it there is no state vector to collapse.

[17]

For all these reasons we believe the sum over histories interpretation deserves more

attention than it has received from philosophers and from physicists concerned with

the meaning of quantum mechanics. To help stimulate such attention, and to provide

a point of reference for further discussion, we propose to analyze here a simple EPR

experiment in detail. However the version of the experiment we will analyze is not

the most well-known one involving a pair of spin-1/2 particles. This would have been

possible, but would have required us first to extend the formal sum-over-histories

framework to deal with particle spin, which in turn might have raised suspicions that

some technical trick was being played to obtain the correct correlations. Fortunately,

there exists [16] a version of the EPR experiment that employs only scalar particles,

6No technical problem obstructs an extension to fermionic fields (indeed the “functional
integral” formalism for Quantum Field Theory is probably the most popular at present),
but the realistic interpretation of the individual histories seems to get lost. One way out
would be if all fermions were composites or collective excitations of fields quantized accord-
ing to “bosonic” commutation relations. Another would be if the particle formulation were
taken as basic, with the “complementary” field formulation being merely a mathematical
artifice (at least for fermions).
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which are precisely the type to which the sum over histories applies most naturally.

Working with this version will allow us to show as clearly as possible, how the non-

local correlations are accounted for without introducing any action at a distance or

superluminal propagation into the formalism.

For reasons of space we will not try to introduce the sum over histories framework

in detail, but only recall its principal features in the form they will be needed below.

For further exposition of the basic ideas, we refer the reader to [4, 5, 6, 7, 8], not all

of which, however, consistently adhere to the view that the particle world lines, and

only the particle world lines, are real.

2 Sum Over Histories Framework

To introduce the sum over histories approach, let us consider the example of a single

non-relativistic particle in one dimension. The basic element of physical reality in

this picture is a “path” or history described by the particle in time, γ = γ(t), and

relevant questions refer to the properties of the path as a whole. To bring out the

close correspondence between the sum over histories approach to quantum mechanics

and classical stochastic processes we will start with the classical situation and then

explicitly state the modifications needed to make a transition to quantum mechanics.

Let us consider the description of Brownian motion as a stochastic process. Con-

sider the space of all possible histories γ(t). One introduces dynamics by giving a

rule for computing probabilities. This is done in the following manner. For example,

we would like to know the probability for a certain class C of paths or histories. The

rule is to attach a positive real number p to each history γ and assign to the class C

the composite probability

P (C) =
∑
γ∈C

p(γ) (2. 1)

One point should be emphasized in anticipation of the quantum situation that will

follow. In the above, since the paths γ(t) are unbounded in time, the individual

probabilities do not really exist. It is possible to make them well defined by truncating

the histories at some final time. In this case, since we are interested only in class

probabilities it is not necessary to do so, since, for appropriate classes, these are

well defined in spite of the fact that the individual p(γ) are not. Of course even

a truncated individual history has measure zero in a continuous space of histories,

and this is another reason why probabilities can only be sensibly assigned to classes.

However this reason is independent of the truncation issue, which would be present

even for a discrete random walk.

6



Let us now make a transition to the quantum mechanical sum-over-histories frame-

work. As before, the basic objects are taken to be the paths γ(t) . The “only”

difference is in the modification of the rule (2.1) for computing probabilities. This

involves associating complex amplitudes with individual paths rather than positive

probability weights. Also, unlike the classical case, to get agreement with standard

quantum mechanical probabilities, one must work with paths truncated at some final

time T , which we can call the “collapse time”. Given the collapse time T , one can

state the quantum mechanical rule for computing probabilities as follows:

1. To every truncated path assign a complex amplitude A(γ)

2. The total amplitude for all truncated paths in a class C that arrive at

q at T is given by

A(q, T ;C) =
∑
γ∈C
γ(T )=q

A(γ) (2. 2)

3. The (un-normalized) probability of the class C is given by

P (C) =
∑
q

|
∑
γ∈C
γ(T )=q

A(γ)|2 (2. 3)

Notice that (2.3) consists of a combination of coherent and incoherent summation.

The amplitudes are further restricted by the consistency condition that P (C) must

be independent of T , which can be interpreted as a generalized unitarity condition.

One can also get the probabilities directly without having to perform two separate

summations by using a slightly modified rule for assigning amplitudes. As before

one considers histories which are limited in time; but at t = T , rather than simply

terminating, they “turn around and proceed backward in time”. Such a “two-way

path”, γ is effectively a pair of histories, γ′(t), γ′′(t), with the property that γ′(T ) =

γ′′(T ). In terms of two-way histories the basic probability-rule appears as follows.

1. To each forward directed path between the initial time and T attach

an amplitude A.

2. To the time reverse of each such path associate the conjugate amplitude

A∗.

3. To each two-way path assign the product of the amplitudes of its for-

ward and backward parts.
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The rule for obtaining the probability of the class C of (one-way) histories is then

P (C) =
∑
γ∈C̃

A(γ) (2. 4)

where C̃ is the class of all two-way paths whose “upward” and “downward” portions

both fulfill the conditions defining C. The total amplitude P (C) itself gives the

probability and does not need to be squared because the amplitudes of the two-way

paths already contain appropriate products of one way amplitudes.

Note that in the analysis using two-way paths it is not necessary that the two-way

amplitudes be complex. In fact, it would be sufficient to replace them by their real

parts in the probability rules to get the correct probabilities. Thus, from this point

of view the existence of quantum interference effects traces back to A being allowed

to be negative, but its being complex is not essential.

In the framework just described, the characteristic quantum “interference effects”

result from the fact that the probabilities (2.3) [or (2.4)] do not obey the classical

sum rules. (Indeed, if they did obey them, they could always be re-expressed in the

form (2.1) — say for a finite sample space {γ}, where a discrete sum makes sense.)

In order to emphasize this fact, one should perhaps refer to the P ’s as “quantum

probabilities”, as suggested to us by Jim Hartle.

Because the classical sum rules no longer obtain, one can not interpret quantum

probabilities as frequencies with respect to a hypothetical “ensemble of universes”,

as one sometimes does with classical probabilities. This intensifies some important

conceptual puzzles concerning the meaning of probability in general, and in particu-

lar concerning its experimental meaning in the face of the dialectical limitations on

knowledge implied by the uncertainty principle. Perhaps the central question here is

“what is the physical meaning (“material basis”) of the specific partition into classes

contemplated in (2.1)-(2.4)?”. From a definite answer to this question would flow

answers to other important questions, like the question whether probabilities must

be taken relative to some “observer” (who properly would be an internal “subsys-

tem”, rather than the external observer of von Neumann’s paradigm); the question

whether probabilities corresponding to arbitrary partitions need be “experimentally

realizable” (cf. [5])7; and the question whether one must exclude interference be-

tween macroscopically distinct histories of subsystems like human beings (to which

we would answer ‘no’).

7In the approach of Gell-Mann-Hartle and Griffiths for example, only a small subset of
the possible partitions is granted meaning, in such a way that all interference terms are
suppressed and quantum probabilities reduce to classical ones.
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It is probably in connection with such issues that the main philosophical interest of

the sum-over-histories interpretation lies, but for present purposes we will be able to

make do with a simpler set of rules, which any more comprehensive resolution of the

above issues will surely preserve. Thus, in the situation we will consider, we can have

effectively external “observers” who, in the end, need only determine which beam a

given photon has emerged in (e.g. by employing the detectors provided in figure 2

below); also, the experiment can be repeated many times and then (it is easy to see)

the frequency interpretation of the computed probabilities will apply. This, together

with the usual rule (which follows from it in this case) about relativizing probabilities

to new knowledge, will suffice for interpreting all the quantum probabilities we will

compute in section four.

3 EPR Experiment (Bohm version)

Before attempting to analyze the EPR Gedankenexperiment using sum over histories,

let us first recall Bohm’s spin-1
2

version of the EPR paradox and review the problems

that arise in understanding this using the state vector picture. Consider a pair of spin-
1
2 particles formed somehow in the singlet state (S = 0). In the experimental setup

shown in Fig.1, measurements can be made, say by Stern Gerlach magnets DL and

DR on selected components of the spin σL and σR. DL and DR perform dichotomic

measurements, i.e, a spin-12 particle can be found in one of the exit channels labeled

u or d. The labels u and d refer to the orientations of the spin along and opposite to

the magnetic field of the analyzer. Let us take the analyzer DL to be oriented such

that the magnetic field is in the direction of the unit vector ~a and the analyzer DR

with a magnetic field in the direction ~b. It is assumed that ~a and ~b can be chosen

freely at the experimenter’s will.
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Figure 1 Experimental set-up for Bohm’s version of the EPR experiment. Two spin-
1
2

particles in the singlet state are emitted from the source at the center. DR and DL

are Stern-Gerlach analyzers capable of measuring selected components of spin.

Writing the singlet state vector as

Ψ(L,R) = 1√
2 [| ↑>L | ↓>R −| ↓>L | ↑>R] (3. 1)

where ↑ and ↓ refer to spin up (down) with respect to an arbitrary axis, we can

calculate the probabilities of various outcomes of measurements according to quantum

mechanics. The results turn out to be the following:

For single measurements with DL and DR in orientations ~a and ~b respectively,

PuL(~a) = PdL(~a) = 1
2 (3. 2)

PuR(~b) = PdR(~b) = 1
2 (3. 3)
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where Pu(d) refers to the probability of a single particle emerging in the upper (lower)

beam. For joint measurements,the quantum mechanical predictions are

Puu(~a,~b) = Pdd(~a,~b) = 1
2 sin2 θ

2
(3. 4)

Pud(~a,~b) = Pdu(~a,~b) = 1
2 cos2

θ

2
(3. 5)

where the first(second) subscript on P indicates the outcome of the left (right) detec-

tor. For example, Pud represents the joint probability for the photons to emerge in the

upper beam at the left detector and the lower beam at the right detector respectively.

θ is the angle between the orientations of the analyzers. In particular,for θ = 0 (same

direction for analyzers)

Puu = Pdd = 0 (3. 6)

Pud = Pdu = 1
2 (3. 7)

This implies a strong correlation between the results of measurement of the two spin
1
2 particles. If particle L is in the upper beam, we are sure to find particle R in the

lower beam and vice versa.

According to “standard quantum mechanics” the complete specification of the

two particle system is given by the state vector ψ, which is constructed so that the

combined system is in the singlet state. It is meaningless to talk about either particle

possessing a definite spin unless a measurement is performed on it to determine the

spin. All one can say is that, given the orientations ~a and ~b of the analyzers, the

probability of either particle registering spin up (down) with respect to its analyzer’s

axis is 50%.

Let us consider the special case where both the analyzers have the same orientation

(θ = 0) , though ~a itself can be chosen arbitrarily. Let us also imagine that the

encounters of the left and right particles with their respective analyzers are spacelike

separated events. Now if a measurement is performed on (say) the left particle and

it is detected in (say) the upper beam, then from (3.5), (3.7) one knows that the

result of measuring the right particle will be that it will emerge in the lower beam

at DR. In the language of state vectors one describes this situation as follows. On

performing a measurement on the left particle , the combined wavefunction collapses,

assigning a definite value to the spin of the right particle compatible with the result

of measurement on the left particle in accordance with the correlations given by

(3.5), (3.7). The wavefunction collapse process is thus totally insensitive to the fact

that the particles are spacelike separated and is therefore nonlocal, as, indeed, is the

wave-function itself, even before it collapses.
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This experiment was originally proposed to argue that quantum mechanics is

incomplete as a theory, and should perhaps be supplemented by classical hidden

variables that would lend an underlying deterministic structure. Statistical averaging

over these hidden variables was to yield the usual probabilities of quantum mechanics.

It was also hoped that this would restore locality in the description. However, in 1964,

Bell [9] demonstrated, using precisely the example of the spin-12 EPR experiment, that

no local hidden variable theory can correctly reproduce all the statistical correlations

predicted by quantum mechanics; and for spin-1 systems there is an even more drastic

conflict between the predicted correlations and locality (see footnote 4). In other

words any theory which replaces the state-vector by other variables of state, and yet

reproduces quantum mechanical predictions, must still contain non-local interactions

among these variables or among them and the analyzers.

In the next section we will describe a slightly different version of the EPRB exper-

iment, which does not involve the notion of intrinsic particle spin. Working with that

other version, we will then show how the sum-over-histories account of the EPRB

experiment is able to produce the required nonlocal correlations without hidden vari-

ables, and without nonlocal interactions.

4 Calculation of Probabilities using Sum Over His-

tories

The modified version of the EPR experiment with photons is described here. [16]

It must be emphasized, as we have stated before that the spin of the photon plays

no role here. For example, we can assume that the photons are linearly polarized

perpendicular to the plane of the paper. The experimental arrangement is shown in

Figure 2, wherein S is a photon source, the M ’s are mirrors (with M0, M5, and M6

being only half-silvered); the D’s are detectors; and the rectangles intercepting CE

and C ′E ′ are adjustable phase-delayers P1 and P2. The source emits two photons at

a time, one toward A and one toward B; and each emitted photon then follows one of

the possible paths indicated. Ideally, one would like to have a source always emitting

one photon to the right and one to the left. Since it is difficult to devise such a source,

we use the arrangement with M0 to simulate that situation by simply ignoring the

events in which both photons go to the right or left. The detection of a photon in the

upper or lower beam is analogous to a measurement with a Stern Gerlach detector in

the spin-12 case.
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Figure 2 An experimental arrangement for the modified two photon version of the

EPR experiment. S is a photon source, the M ’s are mirrors (with M0, M5, M6 only

half slivered). The D’s are the detectors with the subscripts 1(2) denoting upper and

lower beams, indicated by u and d in the text. The rectangles marked eiα and eiβ

intercepting the beams indicate the phase delayers. The source emits two photons at

a time that follow the possible paths indicated by arrows.

Let us now calculate the joint probabilities for

1. both photons emerging in the upper beams, and hence being detected

at D1R and D1L.

2. one photon emerging in the upper beam and hence being detected at

D1R (D1L) and the other emerging at the lower beam at D2L (D2R).
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The rules for assigning amplitudes for this particular experiment are the follow-

ing:8

1. At a half silvered mirror, the amplitude attached to the reflected beam

= i√
2
. Amplitude attached to a transmitted beam = 1√

2
. The fact that

(reflection amplitude) = +i(transmission amplitude) follows from the

requirement that the evolution be unitary, given that the transmission

probability is 1/2 (and the mirror is symmetric). We have chosen the

amplitude for the reflected beam as +i√
2
. One can also design mirrors

for which we have −i√
2

instead, and that would give the same results.

2. Whenever the path of a photon passes through a phase shifting device

P , attach an amplitude eiθ to that particular path where θ is the phase

appropriate to the device.

Using these rules and the prescription for sum over histories given by (2.2) and

(2.3), we can calculate the probabilities for photons to arrive at D1R and D1L. There

are two possible histories fulfilling this condition:

(i) the photon that goes to the left follows SACED1L and the photon going to the

right follows SBD′E ′D1R.

(ii)The photon that goes to the left follows SBDED1L, and the photon that goes to

the right follows SAC ′E ′D1R.

At this point one should mention that in applying rules (2.2) and (2.3) the outer

summation in equation (2.3) is inoperative in this specific situation. The collapse

time can be taken to coincide with detection at the detectors, and then each class C

refers to (truncated) paths with definite final positions. Thus there is only one term

in the incoherent sum that contributes. In the computation that follows we will also

use the fact that the amplitude of a path is equal to the product of the amplitudes

of its segments.

Amplitude for (i)

= (amplitude for SACED1L)(amplitude for SBD′E ′D1R)

= A0(
i√
2
eiα

i√
2

)(
1√
2

1√
2

) (4. 1)

8In stating these rules we consider an idealized situation in which the spatio-temporal
indeterminacy of particle-location within a given one of our trajectories is ignored; or if
you prefer, you can take the experiment as only a Gedanken one affording a simplified
illustration of how EPR-like correlations are understood within the sum-over-histories
framework. In this connection recall also that the semiclassical propagator is in fact exact
for a free particle.
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where A0 is the amplitude common to all paths and (4.1) gives the un-normalized

amplitude.

Amplitude for (ii)

= (amplitudeforSBDED1L)(amplitudeforSAC ′E ′D1R)

= A0(
i√
2

1√
2

)(
1√
2
eiβ

i√
2

) (4. 2)

The total amplitude according to (2.2) is the sum of (4.1) and (4.2).

Auu = A0(
i√
2
eiα

i√
2

)(
1√
2

1√
2

) + A0(
i√
2

1√
2

)(
1√
2
eiβ

i√
2

)

=
−A0

4
(eiα + eiβ) (4. 3)

where as before we adhere to the convention that the first(second) subscript on A

indicates the outcome of the left(right) detector. When we calculate the probabilities

we normalize them so that the events where both photons go to left/right are ignored

(A0 =
√

2). 9 Probability of both photons emerging in the upper beam according to

(2.3) is given by

Puu = |Auu|2 =
1

4
[1 + cos (α− β)] = 1

2 cos2
(α− β)

2
(4. 4)

Similarly,

Pdd = 1
2 cos2

(α− β)

2
(4. 5)

For the case where one photon emerges in the upper beam and the other emerges

in the lower beam, again there will be two paths contributing to the total amplitude.

These are:

(A) the photon that goes to the left follows SACED1L and the photon that goes to

the right follows SBD′E ′D2R.

(B) the photon that goes to the left follows SBDED1L and the photon going to the

right follows SAC ′E ′D2R.

As in the previous case amplitudes for (A) and (B) will combine giving the total

amplitude.

Aud = A0(
i√
2
eiα

i√
2

)(
1√
2

i√
2

) + A0(
i√
2

1√
2

)(
1√
2
eiβ

1√
2

)

=
A0i

4
(eiβ − eiα)

= −Adu (4. 6)

9This can be interpreted either as part of the specification of the initial conditions, or
(as suggested by a referee) merely as an example of relativization of probabilities.
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The resulting probabilities are obtained as

Pud = Pdu = |Aud|2 =
1

4
[1− cos (α− β)] = 1

2 sin2 (α− β)

2
(4. 7)

Equations (4.4), (4.5) and (4.7) give the correct quantum mechanical probabilities

coinciding with those calculated using a state vector. Comparing these results with

those of the spin-12 case mentioned earlier, we notice that they can be put in one to

one correspondence by identifying θ with α − β + π, and the probability of having

both spins up with Puu. However the correspondence between the two situations is

not perfect, in the following sense. In the spin-12 case, the unit vector ~a(~b) specifies

the orientation of the analyzer DR(DL). This is equivalent to specifying a point

on the unit sphere given by two angles (θ, φ). However, in attempting to make the

correspondence between the spin-12 case and the results of this section, we find that the

orientation of the analyzers must be specified by the single angle α(β). This translates

to specifying the orientations of the analyzers by two-dimensional unit vectors instead

of three-dimensional ones. As a result, to make the appropriate identifications with

the spin-12 case, one must consider the special case where the axes of the analyzers

are restricted to the x − y plane (say). This is however not too restrictive, since in

the usual version of Bell’s inequality, in order to demonstrate that the inequality is

violated by quantum mechanics, it is sufficient to choose a set of orientations of the

analyzers only in the x− y plane.

5 Calculation of Probabilities Using Two-way

Paths

One can get the probabilities (4.4), (4.5) and (4.7) directly, without having to square

any partial amplitudes, by using amplitudes for “two-way histories” as specified ear-

lier. A two-way history in this case is a pair of photon trajectories each starting from

the source and reaching the detector then turning back at the detector and ending at

the source. We will calculate Puu by summing over amplitudes for two-way histories

in accordance with (2.4). The class C refers to paths in which a photon emerges in

the upper left beam and another emerges in the upper right beam. All two-way paths

that are included in the sum must fulfill the condition C in both their “forward” and

“backward” portions. We can see that there are four such paths.

(I){(SAC ′E ′D1R)(SBDED1L)}{(D1RE ′C ′AS)(D1LEDBS)}

(II) {(SAC ′E ′D1R)(SBDED1L)}{(D1RE ′D′BS)(D1LECAS)}
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(III) {(SBD′E ′D1R)(SACED1L)}{(D1RE ′D′BS)(D1LECAS)}

(IV) {(SBD′E ′D1R)(SACED1L)}{(D1RE ′C ′AS)(D1LEDBS)}

The overbar denotes the “return” portion of the paths. The notation is more or less

self explanatory, but to avoid any ambiguity, let us explain what we mean by the am-

plitude (I) in detail. The first factor { } corresponds to the amplitude for the photon

transmitted to the right to be reflected at M2 and then get reflected at M6 and emerge

in the upper right beam, and the photon reflected to the left to get reflected at M3

and be transmitted at M5 and emerge in the upper left beam. The second factor { }
denotes the amplitude for the following backward portion of the path. The photon

in the upper right beam returns after reflection at M6 and M2 and transmission at

M0 to the source S, and the photon in the upper left beam returns to S after getting

transmitted through M5 and reflected at M3 and M0.

We assign amplitudes in accordance with the rules stated before and compute

probabilities using (2.4)

Amplitude for (I), A1

= A0{(
1√
2
eiβ

i√
2

)(
i√
2

1√
2

)}A0
∗{(−i√

2
e−iβ

1√
2

)(
−i√

2

1√
2

)} (5. 1)

Amplitude for (II), A2

= A0{(
1√
2
eiβ

i√
2

)(
i√
2

1√
2

)}A0
∗{( 1√

2

1√
2

)(
−i√

2
e−iα
−i√

2
)} (5. 2)

The factors corresponding to the component amplitudes are written in the same order

as they appear in (I).

Amplitude for (III), A3

= A0{(
1√
2

1√
2

)(
i√
2
eiα

i√
2

)}A0
∗{( 1√

2

1√
2

)(
−i√

2
e−iα
−i√

2
)} (5. 3)

Amplitude for (IV), A4

= A0{(
1√
2

1√
2

)(
i√
2
eiα

i√
2

)}A0
∗{(−i√

2
e−iβ

1√
2

)(
1√
2

−i√
2

)}

= A2
∗ (5. 4)

Using (2.4), the un-normalized probability of finding the right and left photons both

in the upper beams

= A1 + A2 + A3 + A4

=
|A0|2

4
cos2

(α− β)

2
(5. 5)
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Normalizing as before, we get

Puu = 1
2 cos2

(α− β)

2
(5. 6)

which, not surprisingly, is the same result as obtained before. Note that in calculating

the probabilities using two-way histories the individual amplitudes A1, A2, A3, A4 are

in general complex, but their sum is always positive.

6 Conclusion

On its own terms our treatment of the EPR experiment is now complete. We have

shown that the probabilities yielded by the sum-over-histories rules are the familiar

ones which violate Bell’s inequality, which entail perfect correlations for equal settings

of the phase delays, and which manifest the “non-locality” that frameworks based on

states evolving in time find so troublesome. In all of our analysis the fundamental no-

tion was that of a history, which reduced in this case to a pair of photon trajectories.

The “events” whose probabilities we computed referred directly to these trajectories,

and no notion of state-vector (or any other auxiliary variables) entered into the anal-

ysis at any stage. The calculation itself was almost trivial, but we presented it in full

in order to demonstrate that no hidden steps were needed where any sort of “spooky

action at a distance” might have entered.

And yet the reader may still be tempted to ask, “where did the wave-function

collapse sneak in?” While our main point is that, within the present framework,

such a question would be asking about a mathematical fiction, it is nevertheless true

that these fictions can sometimes be introduced as useful intermediaries in calculating

probabilities, and we would like to describe in a moment how our analysis would look

if this were done.

Before doing so, however, we would like to modify slightly the experimental sit-

uation we have been considering so far. Namely we will imagine the final detection

processes to be displaced from each other in time, the better to address an important

related issue we did not need to deal with in the above analysis, namely the issue

of how, within the sum-over-histories framework, the acquisition of new knowledge

modifies the prediction of future probabilities.

To render the correspondence with the Bohm version of EPR as close as possible,

let us mentally divide the experimental apparatus of figure 2 into three parts: the

effective source, consisting of the photon source proper together with the mirror M0;

the analyzer on the left, consisting of the mirrors M1,M3 and M5 together with the
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phase-delayer P1; and the similar analyzer on the right, comprising M2,M4,M6, and

P2. To simplify the wording of the present discussion we omit the detectors indicated

in figure 2 and let the photons be seen directly by human beings: “ourselves” on the

left and “our friends” on the right. Finally, let us suppose—in order to frame the

“collapse issue” as vividly as possible—that our friends postpone their observation of

the photon on the right, while in the meantime we see the left photon emerge in the

upper beam.

On the basis of this observation we would then of course predict probabilities

for our friends’ subsequent detection, which differ from the a priori odds of 50-50

that applied when the two photons left the effective source. This change comes

about not for any mysterious reason, but merely because we follow the standard

rule of relativizing probabilities to new knowledge. Having determined that the left

photon is in the upper beam, we must recompute probabilities for the right photon,

retaining only the contributions from those histories which are compatible with our

new information. The resulting probability that the right photon emerges in the

upper beam is then, according to equations (4.4) and (4.7), cos2(α− β)/2, instead of

50%.

In all of this so far there was nothing involving the notion of state-vector. If we

desire, however, we can arrange to describe the effects of the recomputation in such a

language, though of course nothing forces to do so. A state vector (or “wave function”)

in the sum over histories framework is effectively a summary of information about the

past, which retains precisely what is needed for computing probabilities pertaining to

the future.10 From the standpoint of the abstract sum over histories, the possibility of

such a summary represents a partial decoupling of past from future closely analogous

to the decoupling that occurs for non-quantum stochastic processes of Markov type

(i.e. processes which fulfill the condition that the past be statistically independent of

the future given the present). Such a decoupling need not occur (just as a stochastic

process need not be Markov) and indeed there exist useful generalizations of the

ordinary amplitude-rules for which no state-vector can be introduced at all.11 If, on

10Thus a state-vector may be defined as an equivalence-class of sets of partial histories.
11One such generalization applies to open systems, for example to a particle in contact

with a heat reservoir. For this example see [11], wherein the “two-way path” formalism
of §5 above is used, and the influence of the reservoir results in an effective dynamics for
the particle in which the “forward” and “backward” portions of its world-line are coupled
to each other by a certain “interaction term” in the amplitude. In this type of situation a
density-operator ρ (though not a state-vector ψ) can still be introduced, but it no longer
summarizes all the relevant information about the past (and correspondingly its evolution
lacks the “Markov” property that ρ(t + dt) is determined by ρ(t) alone). For quantum
gravity, it may be that not even such a non-Markov ρ will be exactly definable, and only
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the contrary, the amplitudes of familiar quantum theories do admit state-vectors, it

is only because they are built up in a special way according to which the amplitude

of a concatenation of two or more partial histories is the product of the amplitudes

associated to the individual parts (multiplicativity).

In the present setting, the amplitudes are in fact multiplicative, and state-vectors

can be introduced at several stages, the first one occurring immediately after the pho-

tons emerge from the effective source. At this stage there are only four possibilities,

which we may denote as | ↑>L | ↑>R, | ↑>L | ↓>R, | ↓>L | ↑>R, | ↓>L | ↓>R; and the

amplitudes for two of them vanish, leaving the effective state

|S >=
i

2
(| ↑>L | ↓>R + | ↓>L | ↑>R).

A second state-vector |T > summarizes the partial amplitudes that apply just after

the photons have emerged from their respective analyzers. Using a similar notation

to indicate what are then the upper and lower beams, and referring to equations (4.3)

and (4.6), we easily write down

|T > = Auu| ↑>L | ↑>R +Aud| ↑>L | ↓>R

+ AdLu| ↓>L | ↑>R +AdLd| ↓>L | ↓>R

=
A0

4
(eiα + eiβ)| ↑>L | ↑>R −

A0i

4
(eiα − eiβ)| ↑>L | ↓>R

+
A0i

4
(eiα − eiβ)| ↓>L | ↑>R −

A0

4
(eiα + eiβ)| ↓>L | ↓>R

which just combines into a single expression the four amplitudes we used in our earlier

analysis. Finally there is the state vector |V > which pertains to a time after we have

seen the left photon in the upper beam, but before our friends have made their own

observations. This vector involves only the photon on the right, and summarizes the

amplitudes obtained by excluding those histories for which the left photon emerges

in the lower beam. In light of equations (4.3) and (4.6) |V > is immediately seen to

be

|V >= −A0

4
(eiα + eiβ)| ↑> −iA0

4
(eiα − eiβ)| ↓> .

From this state-vector we trivially recover the same “relativized” probabilities for

the right photon that we found above.

Clearly it is in the transition from |T > to |V > that the dreaded collapse has

occurred; but it is equally clear that, within the present framework, this collapse is

essentially a fictitious event. To illustrate what we mean by saying this, we may refer

the global probabilities themselves will make sense.
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to the analogous collapse which occurs in the context of classical stochastic processes.

Take, for example, a point-particle undergoing Brownian motion in a homogeneous

medium. Given that it is released at the origin at time t = 0, we can compute the

positional probability distribution f(x) appropriate to some later time t = t0. This

density f is analogous to ψ in the sense that all future probabilities follow from it

independently of any knowledge pertaining to t < t0. Now, if at t = t0 we find the

particle at x = x0, f will suddenly “collapse” from a Gaussian distribution centered

at the origin to a δ-function centered at x0. From the sum over histories standpoint,

the collapse of ψ from |T > to |V > is no more or less real (or nonlocal) than this

collapse of f in the case of Brownian motion. In both cases it is the history itself that

constitutes the physical reality, and the dynamics is most fundamentally expressed in

terms of probabilities of sets of histories, not in terms of derived quantities like ψ or

f whose usefulness is contingent on very special properties of those probabilities.

Before concluding, we should perhaps stress that we do not intend the last few

paragraphs as a comprehensive exposition of how “von Neumann measurement the-

ory” may be recovered in the sum over histories language. Indeed, our analyzers are

not even “ideal” in the sense that they don’t preserve the eigenstates they effectively

look for (although it would be easy to modify them so that they did). Rather we only

wanted to show how the notions of state-vectors and their collapse can be recovered

(in certain situations) without the vectors thereby taking on any more physical real-

ity than, for example, a one-particle distribution function has in pre-quantum kinetic

theory.

Finally, we would like to return to the question of locality by commenting briefly

on the sense in which this fundamental feature can be regarded as present in the

sum over histories formulation we have been using. It is true, of course, that no

blatantly nonlocal process like wave-function collapse enters this formulation, but on

the other hand the essential quantity on which the whole framework rests — the

probability amplitude — already has a global character since it pertains to entire

(one-way or two-way) histories, which are spread out not only in space but in time

as well. In such a framework it is not even clear a priori that anti-causal effects are

excluded, let alone non-local ones (in the absence of Lorentz invariance, the two are

not necessarily connected, of course.) If nonetheless, neither sort of effect is present,

it can only be because the amplitudes take a special form, to wit that the amplitude

of an entire history is the product of the amplitudes of its spacetime parts.12 (In

12Ironically it is just this property of the amplitudes which, as mentioned above, makes
possible the introduction of the state-vectors whose “collapse” then introduces such a
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the non-relativistic theory this can’t be exactly true, of course, because action at

a distance is present. Thus locality can only be approximate in this case.) In the

presence of certain other general features (cf. [5]) this locality of the amplitudes

translates into the impossibility of superluminal signaling and signaling into the past.

Using our EPR setup we can illustrate the absence of superluminal signaling with

a couple of familiar examples. In particular, when a measurement is performed on

the right hand photon , the choice of the phase delay β cannot affect the probability

of finding the left photon in the upper beam, for example. Thus, the probability of

finding the left photon in the upper beam = Puu+Pud = 1
2 cos2 (α−β)

2
+ 1

2 sin2 (α−β)
2

= 1
2 ,

which is independent of β. Similarly, it can be shown that removing the mirror M6

altogether on the right will not affect the left hand probabilities.

Thus, locality maintains a rather uneasy presence in sum-over-histories quantum

mechanics. It corresponds to a very definite feature of the amplitudes, but it tends to

conflict with the global spirit of the entire framework. On one hand, this is reminis-

cent of classical stochastic processes, where probabilities apply to entire histories but

causality can still be present in the specific form of these probabilities (e.g. if they

are Markov). If seen in this light the tension between global amplitudes and locality

might appear to be inconsequential. On the other hand Minkowskian locality loses

much of its meaning in the presence of a dynamical spacetime metric, so maybe a

more global framework which still has room for a certain kind of formal locality is

exactly what we should have been looking for in connection with quantum gravity.

Be that as it may, it is perhaps fair to say that the sum-over-histories formu-

lation goes a long way toward taking the “mystery” out of quantum mechanics, or

at least reducing it to the mystery inherent in the notion of probability itself. No

doubt that mystery is enhanced somewhat by the presence of non-positive amplitudes

and references to two-way paths, but the fundamental idea of assigning weights to

classes of histories remains the same, as does the identification of reality with a sin-

gle (though in general imperfectly known) history or “path”. We believe that this

sum-over-histories way of understanding the quantum principle clears up some of the

philosophical puzzles connected with other formulations; and for those it doesn’t fully

clear up, it at least recasts them in a way which promises to be fruitful for the further

development of quantum theory, or of the more general forms of dynamics that will

one day replace it.

In concluding, we would like to acknowledge the stimulus to the ideas presented

herein of a continuing discussion over the years between R.D.S. and John Friedman

strong appearance of nonlocality into the theory.
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concerning the possibility of making the sum-over-histories formulation the basis for a

philosophy of quantum mechanics. We also would like to thank Jim Hartle for helpful

criticism of the wording of an earlier draft of this paper. Finally, one of us (S.S) would

like to thank the Physics Department of Syracuse University for hospitality during

the period over which this research was done. This research was partly supported by

NSF grants PHY-9005790 and PHY-8717155.
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