
Solution Set #3

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. A Clifford Group Circuit
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a) We follow the evolution of Xi and Zi, i = 1, . . . , 3:

X1
H−→ Z ⊗ I ⊗ I

CNOT−→ Z ⊗ I ⊗ I
CNOT−→ Z ⊗ I ⊗ I

R⊗H−→ Z ⊗ I ⊗ I
CNOT−→ Z ⊗ I ⊗ I

X2
H−→ I ⊗X ⊗ I

CNOT−→ I ⊗X ⊗ I
CNOT−→ I ⊗X ⊗ I

R⊗H−→ I ⊗ Y ⊗ I
CNOT−→ I ⊗ Y ⊗ Z

X3
H−→ I ⊗ I ⊗X

CNOT−→ I ⊗ I ⊗X
CNOT−→ I ⊗ I ⊗X

R⊗H−→ I ⊗ I ⊗ Z
CNOT−→ I ⊗ I ⊗ Z

Z1
H−→ X ⊗ I ⊗ I

CNOT−→ X ⊗X ⊗ I
CNOT−→ X ⊗X ⊗X

R⊗H−→ X ⊗ Y ⊗ Z
CNOT−→ X ⊗ Y ⊗ I

Z2
H−→ I ⊗ Z ⊗ I

CNOT−→ Z ⊗ Z ⊗ I
CNOT−→ Z ⊗ Z ⊗ I

R⊗H−→ Z ⊗ Z ⊗ I
CNOT−→ Z ⊗ Z ⊗ Z

Z3
H−→ I ⊗ I ⊗ Z

CNOT−→ I ⊗ I ⊗ Z
CNOT−→ Z ⊗ I ⊗ Z

R⊗H−→ Z ⊗ I ⊗X
CNOT−→ Z ⊗X ⊗X

(1)

b) If the first and third qubits start as |0〉, we start with a stabilizer generated by Z⊗ I⊗ I and I⊗ I⊗Z.
We then end with

X ⊗ Y ⊗ I (2)
Z ⊗X ⊗X (3)

X = X2 = I ⊗ Y ⊗ Z (4)

Z = Z2 = Z ⊗ Z ⊗ Z, (5)

with the first two lines giving the generators of the stabilizer.

Z1 anticommutes with the first generator of the stabilizer, so the outcome if we measure it is a random
bit a = ±1, and we end with

(−1)a Z ⊗ I ⊗ I (6)
(−1)a I ⊗X ⊗X (7)

X = X2 = I ⊗ Y ⊗ Z (8)
Z = Z2 = (−1)a I ⊗ Z ⊗ Z. (9)

The second stabilizer generator and Z have been multiplied by the first stabilizer generator in order
to separate out the now measured first qubit.
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If we measure Z2, we still get a random bit b, and the state is

(−1)b I ⊗ Z ⊗ I (10)
(−1)b⊕1 Y ⊗ I ⊗X (11)

X = X2 = X ⊗ I ⊗ Z (12)
Z = Z2 = (−1)b Z ⊗ I ⊗ Z. (13)

To get this, we must multiply the original second stabilizer generator and X by the original first
stabilizer generator in order to get things that commute with the measured operator. The extra factor
of −1 appears in the eigenvalue of the new second generator because of the factors of i that appear
when multiplying Pauli operators. (For instance, Y = iXZ.)

If we measure Z3, we get a random bit c and state

X ⊗ Y ⊗ I (14)
(−1)c I ⊗ I ⊗ Z (15)

X = X2 = (−1)c I ⊗ Y ⊗ I (16)
Z = Z2 = (−1)c Z ⊗ Z ⊗ I. (17)

If we measure Z1 and then Z2, we get random bits a and b, but leave the state

(−1)a Z ⊗ I ⊗ I (18)
(−1)b I ⊗ Z ⊗ I (19)

X = X2 = (−1)a⊕b I ⊗ I ⊗ Y (20)
Z = Z2 = (−1)a⊕b I ⊗ I ⊗ Z. (21)

Then measuring Z3 measures the logical state, the outcome being a measurement of the input qubit
on the second wire, reversed if a 6= b.

Problem #2. Equivalence of Stabilizer Entangled States

a) Corrected from the original problem set, the stabilizer should be:

Y ⊗ Y ⊗ X ⊗X

Z ⊗ Z ⊗ Y ⊗ Z

I ⊗X ⊗ Y ⊗X

Z ⊗X ⊗ I ⊗X

The stabilizer for two EPR pairs is

X ⊗ I ⊗ X ⊗ I

I ⊗X ⊗ I ⊗X

Z ⊗ I ⊗ Z ⊗ I

I ⊗ Z ⊗ I ⊗ Z

We must match up generators of the original stabilizer with these four generators. In doing so, we must
preserve commutation on Alice’s and Bob’s halves separately, since we are only doing local Clifford
gates. We decide to map the first generator to the first generator:

(Y ⊗ Y )⊗ (X ⊗X) −→ (X ⊗ I)⊗ (X ⊗ I). (22)
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We need to choose something that locally commutes with it to map to the next generator; let us pick
the fourth one from the original stabilizer:

(Z ⊗X)⊗ (I ⊗X) −→ (I ⊗X)⊗ (I ⊗X). (23)

We then need something that locally anticommutes with the first generator and commutes with the
second generator to be our next operator:

(I ⊗X)⊗ (Y ⊗X) −→ (Z ⊗ I)⊗ (Z ⊗ I). (24)

Then to finish up, we need something that anticommutes with the original fourth generator and com-
mutes with the other three. The second generator does not fit the bill, since it anticommutes with
both the third and fourth original generators, but the product of the first two generators works:

−(X ⊗X)⊗ (Z ⊗ Y ) −→ (I ⊗ Z)⊗ (I ⊗ Z). (25)

We then must perform the following Clifford group operation on Alice’s side:

Y ⊗ Y → X ⊗ I (26)
Z ⊗X → I ⊗X (27)
I ⊗X → Z ⊗ I (28)

−X ⊗X → I ⊗ Z. (29)

On Bob’s side, we do the Clifford group gate

X ⊗X → X ⊗ I (30)
I ⊗X → I ⊗X (31)
Y ⊗X → Z ⊗ I (32)
Z ⊗ Y → I ⊗ Z. (33)

b) The stabilizer of k EPR pairs is generated by pairs of Pauli operators which anticommute on each
side. Each pair commutes locally with all the other pairs, and with the single-qubit Z generators
for the |0〉 qubits. We must therefore choose a new set of generators for the original stabilizer which
are divided into pairs of Pauli operators which anticommute on Alice’s (and Bob’s) side with each
other but commute with everything else, plus some additional generators which locally commute with
everything.

We can do this by taking any element of the stabilizer M which anticommutes locally with at least
one other element N , assuming one exists. We can choose the remaining generators of the stabilizer
to locally commute with both of these: If we have a candidate generator P that locally anticommutes
with M , then NP locally commutes, and similarly, if P locally anticommutes with N , MP locally
commutes.

Then, using local Clifford operations, we can map M → X1⊗X1 and N → Z1⊗Z1. This is true because
M = MA ⊗ MB and N = NA ⊗ NB . Since M and N commute, both pairs of factors anticommute:
{MA, NA} = {MB , NB} = 0. They are thus both not the identity, so there is some Clifford group
operation that maps MA → X1, NA → Z1, and similarly on Bob’s side. Since the remaining generators
commute with M and N , they are mapped to operators which act trivially on the first qubit on each
side (since only the identity commutes with both X and Z). Therefore, we now have a tensor product
of an EPR pair with a stabilizer state on nA − 1 and nB − 1 qubits.

We repeatedly apply the above procedure until we cannot find any two elements of the remaining
stabilizer that anticommute locally, and have only mA and mB qubits left. We will map the remaining
generators to operators of the form either Z ⊗ I or I ⊗ Z. However, we need more information than
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simply local commutation rules to know that we can do this, since local Clifford group operators cannot
map a non-trivial Pauli operator to the identity, regardless of commutation.

We note, however, that with mA qubits held by Alice, there can be at most mA independent commuting
Pauli operators on Alice’s side. We choose as many such independent generators m̃A as possible; the
remaining generators are dependent on Alice’s side, and thus, by suitable multiplications, can then
be chosen to act as I on Alice’s side. We have a total of mA + mB qubits and thus have mA + mB

generators, which means we have mB + (mA − m̃A) generators left which act only on Bob’s side. But
since they commute and are independent, there can be at most mB of them, so mA = m̃A.

There are then also mB commuting independent generators which act only on Bob’s side, which we
might as well map, via Clifford group gates, to the Zis on Bob’s side. The generators which act on
Alice’s side commute with them, so all must act as a tensor product of Is and Zs on Bob’s side, and by
suitable multiplications, we can eliminate all Zs. Thus we are left with mA commuting, independent
operators acting only on Alice’s side, and a local Clifford group operation will map them to the Zis on
Alice’s side.

Problem #3. Number of Stabilizer Codes

a) We know from the linear algebra lemma that there are 2n−r independent Pauli operators that commute
with all r generators of S. Ignoring phases, this comes to 22n−r total such Pauli operators. Since 2r

of these are already in S, there are 22n−r − 2r elements in N(S) \ S.

If we pick a series M1, . . . ,Mr of generators, each generator Mi+1 must be in N(Si)\Si for the stabilizer
Si generated by M1, . . . Mi. (S0 being {I}.) There are thus a total of

An,r =
r−1∏
i=0

(
22n−i − 2i

)
= (22n − 1)(22n−1 − 2) · · · (22n−r+1 − 2r−1) (34)

such sequences.

b) The first generator M1 may be any non-identity element of S; there are 2r−1 possible choices. Further
generators Mj+1 may be any element of S which is not already in Sj , the stabilizer generated by
M1, . . . Mj . There are 2r − 2j such operators. Thus, the total number of ways to pick an ordered set
of generators is

Bn,r =
r−1∏
j=0

(
2r − 2j

)
= (2r − 1)(2r − 2) · · · (2r − 2r−1). (35)

c) Without phases, we have An,r ways (r = n − k) to pick an ordered set of generators for S from the
whole Pauli group, but for every S, there are Bn,r different ways of choosing generators that give S.
Thus, the total number of stabilizers without phases is An,r/Bn,r. There are r generators, each of
which can have phase ±1. (±i is impossible, or −I would be in S, and all non-generating elements of
the stabilizer have their phases determined by the phases of the generators.) Thus, the total number
of stabilizer codes is

Nn,k = 2r An,r

Bn,r
(36)

= 2r 22n − 1
2r − 1

· 22n−1 − 2
2r − 2

· · · 2
2n−r+1 − 2r−1

2r − 2r−1
(37)

= 2r
r−1∏
i=0

4n−i − 1
2r−i − 1

, (38)

with r = n− k.
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We then take the base 2 logarithm to find

log Nn,k = r +
r−1∑
i=0

[
log(4n−i − 1)− log(2r−i − 1)

]
. (39)

Let us let n be large. Then, when i � r, we have

log(4n−i − 1)− log(2r−i − 1) ≈ 2(n− i)− (r − i) = 2n− r − i. (40)

If r is much smaller than n, i never gets close to n, and the sum is roughly 2nr. If, on the other
hand, r is large, the terms in the sum with r − i small are few and we can replace them by the i � r
approximation without much changing the sum. In that case, we have

log Nn,k ≈ r +
r−1∑
i=0

(2n− r − i) = r + (4n− 3r + 1)r/2 ≈ 2nr − 3r2/2 = n2/2 + nk − 3k2/2. (41)
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