Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Temperature enhancement of thermal Hall conductance quantization



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
20080020

Abstract

The quest for non-Abelian quasiparticles has inspired decades of experimental and theoretical efforts. Among their clearest signatures is a thermal Hall conductance with quantized half-integer value. Such a value was indeed recently observed in a quantum-Hall system at ν=5/2 and in the magnetic insulator α-RuCl3. I will explain that a non-topological "thermal metal" phase that forms due to quenched disorder may disguise as a non-Abelian phase by well approximating the trademark quantized thermal Hall response. Remarkably, the quantization here improves with temperature, in contrast to fully gapped systems. In my talk, I will provide analytical and numerical evidence for this effect and discuss its possible implications for the aforementioned experiments.