Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Pinning of Fermionic Occupation Numbers



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
13010105

Abstract

The problem of determining and describing the family of 1-particle reduced density operators (1-RDO) arising from N-fermion pure states (viapartial trace) is known as the fermionic quantum marginal problem. We present its solution, a multitude of constraints on the eigenvalues of the 1-RDO, generalizing the Pauli exclusion principle. To explore the relevance of these constraints we study an analytically solvable model of N fermions in a harmonic potential and determine the spectral `trajectory' corresponding to the ground state as function of the fermion-fermion interaction strength.Intriguingly, we find that the occupation numbers are almost, but not exactly, pinned to the boundary of the allowed region (quasi-pinned). Our findings suggest a generalization of the Hartree-Fock approximation.

see also: http://arxiv.org/abs/1210.5531