This series consists of talks in the areas of Particle Physics, High Energy Physics & Quantum Field Theory.
Cosmic-ray anti-deuterium and anti-helium have long been suggested as probes of dark matter, as their secondary astrophysical production was thought extremely scarce. But how does one actually predict the secondary flux? Anti-nuclei are dominantly produced in pp collisions, where laboratory cross section data is lacking. We make a new attempt at tackling this problem by appealing to a scaling law of nuclear coalescence with the physical volume of the hadronic emission region. The same volume is probed by Hanbury Brown-Twiss (HBT) two-particle correlations.
Primordial black holes (PBHs) can appear from early Universe dynamics. We show that some or all of heavy element abundance from r-process nucleosynthesis can be produced in interactions of tiny primordial black holes with neutron stars (NSs), if PBHs make up a few percent or more of the dark matter. A PBH captured by a NS will eventually consume it. For a rapidly rotating pulsar, the resulting star spin-up will eject significant amount of cold neutron rich material.
Quantum non-demolition measurements performed using qubit-based artificial atoms may enable the next generation of higher mass dark matter axion search experiments. These QND measurements can precisely determine the amplitude of the photon wave sourced by the dark matter axions while placing the back reaction noise into the phase quadrature.
A permanent non-zero electric dipole moment of the free neutron (nEDM) violates CP-symmetry. The search for an nEDM contributes to understanding the Baryon asymmetry,
as well as it has a high discovery potential for Beyond Standard Model physics. The tool of choice to investigate the nEDM are ultracold neutrons (UCN), since they have such low energies that they can be stored in traps and allow observation times of hundreds of seconds.
Any quantum field theory can be thought of as arising from a perturbed UV conformal field theory, suggesting that information about the full RG flow is encoded in the original CFT. I will discuss ongoing work developing new methods for extracting this information to study strongly-coupled IR dynamics. This method uses a UV basis of conformal Casimir eigenstates to construct the Hamiltonian, which is then truncated at some maximum Casimir eigenvalue and diagonalized to approximate the low energy spectrum of the IR theory.
In the framework of the ordinary seesaw model with right-handed neutrinos (and nothing else) we show that the total lepton number violating decay of the Higgs doublet into a right-handed neutrino and a standard model lepton can successfully account for the baryon asymmetry of the Universe. This is possible thanks to thermal effects shortly before the sphalerons decouple.
We derive in the framework of soft collinear effective field theory (SCET) a Lagrangian describing the t-channel exchange of Glauber quarks, which are incorporated through fermionic potential operators in the effective theory. The Wilson line structure of the operators, which is derived from matching calculations and the symmetries of the effective theory, describe additional soft and collinear emissions from a fermionic t-channel exchange in the forward scattering limit to all orders.
Since the Higgs, the LHC has offered no discoveries despite a sweeping hunt for new resonances.
Sub-GeV dark matter is a theoretically motivated but largely unexplored paradigm of dark matter. In this talk, I will discuss recent work on the direct detection of sub-GeV dark matter through dark matter-electron scattering. I will present some motivated models that can be probed with these techniques as well as projections for current and near-term noble liquid, semiconductor, and scintillator experiments. Finally, I will discuss some new techniques that may allow us to more robustly discriminate between dark matter signatures and background.
Utilizing the Fermi measurement of the gamma-ray spectrum toward the Galactic Center, we derive some of the strongest constraints to date on the dark matter (DM) lifetime in the mass range from hundreds of MeV to above an EeV. Our profile-likelihood based analysis relies on 413 weeks of Fermi Pass 8 data from 200 MeV to 2 TeV, along with up-to-date models for diffuse gamma-ray emission within the Milky Way.