- Home »
- Two exponential separations in communication complexity through bounded-error quantum state indistinguishability

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

06010001

We consider the problem of bounded-error quantum state identification: given one of two known states, what is the optimal probability with which we can identify the given state, subject to our guess being correct with high probability (but we are permitted to output "don't know" instead of a guess). We prove a direct product theorem for this problem. Our proof is based on semidefinite programming duality and the technique may be of wider interest. Using this result, we present two new exponential separations in the simultaneous message passing model of communication complexity. Both are shown in the strongest possible sense: -- we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared randomness, but needs n^(1/3) communication if the parties don't share randomness, even if communication is quantum; -- we describe a relation that can be computed with O(log n) classical bits of communication in the presence of shared entanglement, but needs (almost) n^(1/3) communication if the parties share randomness but no entanglement, even if communication is quantum.

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics