Three-dimensional topological sigma-model with boundaries and defects

Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
09030011

Abstract

The Rozansky-Witten model is a topological sigma-model in three dimensions whose target is a hyper-Kahler manifold. Upon compactification to 2d it reduces to the B-model with the same target. Boundary conditions for the Rozansky-Witten model can be regarded as a 3d generalization of B-branes. While branes form a category, boundary conditions in a 3d TFT form a 2-category. I will describe the structure of this 2-category for the Rozansky-Witten model and its connection with a categorification of deformation quantization. I will also discuss defects of codimension 1 (domain walls) and defects of codimension 2 (line operators) in the Rozansky-Witten model.