The theory of composition in physics



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
13040121

Abstract

We
develop a theory for describing composite objects in physics. These can be
static objects, such as tables, or things that happen in spacetime (such as a
region of spacetime with fields on it regarded as being composed of smaller
such regions joined together). We propose certain fundamental axioms which, it
seems, should be satisfied in any theory of composition. A key axiom is the
order independence axiom which says we can describe the composition of a
composite object in any order. Then we provide a notation for describing
composite objects that naturally leads to these axioms being satisfied. In any
given physical context we are interested in the value of certain properties for
the objects (such as whether the object is possible, what probability it has,
how wide it is, and so on). We associate a generalized state with an object.
This can be used to calculate the value of those properties we are interested
in for for this object. We then propose a certain principle, the composition
principle, which says that we can determine the generalized state of a
composite object from the generalized states for the components by means of a
calculation having the same structure as the description of the generalized
state. The composition principle provides a link between description and
prediction.