On Semi-classical States of Quantum Gravity and Noncommutative Geometry

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


The idea behind an intersection between loop quantum gravity and noncommutative geometry is to combine elements of unification with a setup of canonical quantum gravity. In my talk I will first review the construction of a semi-finite spectral triple build over an algebra of holonomy loops. Here, the loop algebra is a noncommutative algebra of functions over a configurations space of connections, and the interaction between the Dirac type operator and the loop algebra captures information of the kinematical part of canonical quantum gravity. Next, I will show how certain normalizable, semi-classical states are build which connects the spectral triple construction to the Dirac Hamiltonian in 3+1 dimensions. Thus, these states can be interpreted as one-particle fermion states in an ambient gravitational field. This analysis indicates that the spectral triple construction involves matter degrees of freedom.