On the Relation between Operator Constraint, Master Constraint, Reduced Phase Space, and Path Integral Quantisation, with Application to Quantum Gravity

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Download Video

Recording Details

Scientific Areas: 
PIRSA Number: 


Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. We review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more specifically, with the Master constraint quantisation for first class constraints. For first class constraints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised) constraints which is always possible locally in phase space. With the above general considerations, we derive concretely the path integral formulations for GR from the canonical theory. We also show that there in principle exists a spin-foam model consistent with the canonical theory of GR.