Quantum spacetime and deformed relativistic kinematics

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


In this seminar, I will consider a deformed kinematics that goes beyond special relativity as a way to account for possible low-energy effects of a quantum gravity theory that could lead to some experimental evidences. This can be done while keeping a relativity principle, an approach which is usually known as doubly (or deformed) special relativity. In this context, I will give a simple geometric interpretation of the deformed kinematics and explain how it can be related to a metric in maximally symmetric curved momentum space. Moreover, this metric can be extended to the whole phase space, leading to a notion of spacetime. Also, this geometrical formalism can be generalized in order to take into account a space-time curvature, leading to a momentum deformation of general relativity. I will explain theoretical aspects and possible phenomenological consequences of such deformation.