Quantum simulation with laser-cooled trapped ions

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

PIRSA Number: 


Laser-cooled trapped ions are among the most versatile experimental platforms for exploring quantum information. In this talk, I will give a brief overview of this system and its capabilities to simulate non-trivial interacting quantum models. Internal states of these ions, such as hyperfine states, constitute well isolated qubit (or spin-1/2) states, with quantum coherence demonstrated up to fifteen minutes. Individual qubits states can be detected by laser beams with near perfection. Quantum logic gates and interacting spin Hamiltonians are engineered by coupling internal states of multiple ions to their collective vibrational modes using optical forces. By suitably tailoring these spin-phonon couplings, interactions between ion-spins can be tuned in magnitude, range, and sign. The laboratory for Quantum Information with Trapped Ions at IQC aims to build a highly flexible quantum simulator with dozens of spins, and explore problems in quantum information and many-body physics in a regime that is intractable with classical computers.