Orbifolds and topological defects

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Download Video

Recording Details

Scientific Areas: 
PIRSA Number: 


Orbifolding a
2-dimensional quantum field theory by a symmetry group admits an elegant description in terms of defect lines and their junction fields. This perspective offers a natural generalization of the concept of an orbifold, in which the role of the symmetry group is replaced by a defect with the structure of a (symmetric) separable Frobenius algebra. In this talk I will focus on the case of Landau-Ginzburg models, in which defects are described by matrix factorizations. After introducing the generalized twisted sectors and discussing topological bulk and boundary correlators in these sectors, I will present a simple proof of the Cardy condition and discuss some further consistency checks on the generalized orbifold theory. This talk is based on arXiv:1307.3141 with Ilka Brunner and Nils Carqueville.