Negative Quasi-Probability Representation is a Necessary Resource for Quantum Computation



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
12030117

Abstract

Abstract The magic state model of quantum computation gives a recipe for universal quantum computation using perfect Clifford operations and repeat preparations of a noisy ancilla state. It is an open problem to determine which ancilla states enable universal quantum computation in this model. Here we show that for systems of odd dimension a necessary condition for a state to enable universal quantum computation is that it have negative representation in a particular quasi-probability representation which is a discrete analogue to the Wigner function. This condition implies the existence of a large class of bound states for magic state distillation: states which cannot be prepared using Clifford operations but do not enable universal quantum computation.