Geometrical dependence of information in 2d critical systems



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Collection/Series: 
PIRSA Number: 
14020119

Abstract

In both classical and quantum critical systems, universal contributions to the mutual information and Renyi entropy depend on geometry. I will first explain how in 2d classical critical systems on a rectangle, the mutual information depends on the central charge in a fashion making its numerical extraction easy, as in 1d quantum systems. I then describe analogous results for 2d quantum critical systems. Specifically, in special 2d quantum systems such as quantum dimer/Lifshitz models, the leading geometry-dependent term in the Renyi entropies can be computed exactly. In more common 2d quantum systems, numerical computations of a corner term hint toward the existence of a universal quantity providing a measure of the number of degrees of freedom analogous to the central charge.