Geometric algebra techniques in flux compactifications



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
Subjects: 
PIRSA Number: 
12110058

Abstract

Using techniques originating in a certain
approach to Clifford bundles known as "geometric algebra", I discuss
a geometric reformulation of constrained generalized Killing spinor equations
which proves to be particularly effective in the study and classification of
supersymmetric flux compactifications of string and M-theory. As an
application, I discuss the most general N=2 compactifications of M-theory to
three dimensions, which were never studied in full generality before. I also
touch upon the connection of such techniques with a certain variant of the
quantization of spin systems.