G-equivariant factorization algebras



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
PIRSA Number: 
18080054

Abstract

There are various ways to define factorization algebras: one can define a factorization algebra that lives over the open subsets of some fixed manifold; or, alternatively, one can define a factorization algebra on the site of all manifolds of a given dimension (possibly with a specified geometric structure). In this talk, I will outline a comparison between G-equivariant factorization algebras on a fixed model space M to factorization algebras on the site of all manifolds equipped with a (M, G)-structure, given by an atlas with charts in M and transition maps given by elements of G. I will introduce the definitions of these two concepts and then sketch the proof that there is a quasi-equivalence between these dg-categories. This is work in progress