Entanglement and topological order in cluster states

Recording Details

Scientific Areas: 
PIRSA Number: 


We study a Hamiltonian system describing a three-spin 1/2 cluster like interaction competing with an Ising-like exchange. We show that a cluster state, the ground state of the Hamiltonian in the absence of the Ising term, is provided by a hidden order of topological nature. In the presence of the cluster and Ising couplings, a continuous quantum phase transition occurs in the system, directly connecting a local broken symmetry phase to a cluster phase with the hidden order. At the critical point the Hamiltonian is self-dual. We analyze the geometric entanglement and demonstrate that it can capture the transition, as a single parameter.