Braid group symmetries of Grassmannian cluster algebras

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


We define an action of the k-strand braid group on the set of cluster variables for the Grassmannian Gr(k,n), provided k divides n. The action sends clusters to clusters, preserving the underlying quivers, defining a homomorphism from the braid group to the cluster modular group for Gr(k,n). Our results can be translated to statements about clusters in Fock-Goncharov configuration spaces of affine flags, provided the number of flags is even. Finally, we apply our results to the two "Grassmannians of finite mutation type," proving in these cases versions of conjectures made by Fomin and Pylyavskyy describing cluster variables as SL_k web invariants.