Playing this video requires the latest flash player from Adobe.
Download link (right click and 'save-as') for playing in VLC or other compatible player.
The large j asymptotic behavior of 4-dimensional spin foam amplitude is investigated for the extended spin foam model (Conrady-Hnybida extension) on a simplicial complex. We study the most general situation in which timelike tetrahedra with timelike triangles are taken into account. The large j asymptotic behavior is determined by critical configurations of the amplitude. We identify the critical configurations that correspond to the Lorentzian simplicial geometries with timelike tetrahedra and triangles. Their contributions to the amplitude are phases asymptotically, whose exponents equal to Regge action of gravity. The amplitude also contains critical configurations corresponding to non-degenerate split signature 4-simplices and degenerate vector geometries.