Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

 

Wednesday Oct 28, 2020
Speaker(s): 

A standard account of the measurement chain in quantum mechanics involves a probe (itself a quantum system) coupled temporarily to the system of interest. Once the coupling is removed, the probe is measured and the results are interpreted as the measurement of a system observable. Measurement schemes of this type have been studied extensively in Quantum Measurement Theory, but they are rarely discussed in the context of quantum fields and still less on curved spacetimes. 

Collection/Series: 
 

 

Wednesday Oct 28, 2020
Speaker(s): 

I will review work by myself and others in recent years on the use of randomization in quantum circuit optimization.  I will present general results showing that any deterministic compiler for an approximate synthesis problem can be lifted to a better random compiler.  I will discuss the subtle issue of what "better" means and how it is sensitive to the metric and computation task at hand.  I will then review specific randomized algorithms for quantum simulations, including randomized Trotter (Su & Childs) and my group's work on the qDRIFT and SPARSTO algorithms.  The qDRIFT algorithm i

Scientific Areas: 
 

 

Tuesday Oct 27, 2020
Speaker(s): 

High-temperature superconductivity in the cuprates remains an unsolved problem because the cuprates start off their lives as Mott insulators in which no organizing principle such a Fermi surface can be invoked to treat  the electron interactions.  Consequently, it would be advantageous to solve even a toy model that exhibits both Mottness and superconductivity.  In 1992 Hatsugai and Khomoto wrote down a momentum-space model for a Mott insulator which is safe to say was largely overlooked, their paper garnering just 21 citations (6 due to our group).  I will show exactly[1] that this model w

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Oct 27, 2020
Speaker(s): 

Universal relationships between asymptotic symmetries, QFT soft theorems, and low energy observables have reinvigorated attempts at flat space holography. In this talk, I will review recent advances in the celestial holography proposal, where the 4d S-matrix is reconsidered as a 2d correlator on the celestial sphere at null infinity.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Oct 27, 2020
Speaker(s): 

Abstract: TBD

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Oct 27, 2020
Speaker(s): 

The new gravitational-wave signal GW190521in LIGO and Virgo marks the first observational detection of the elusive intermediate-mass black holes. The detection also confirms there exist a new class of black holes in the mass gap predicted by the pair-instability supernovae theory. In this talk, I will discuss the process that went behind inferring the astrophysical properties of this historic discovery. I would briefly address the alternative scenarios we looked into for a possible exotic origin of this signal, including any violation of General Relativity.

Collection/Series: 
Scientific Areas: 
 

 

Monday Oct 26, 2020
Speaker(s): 

The remarkable experimental advances made it possible to create highly tunable quantum systems of ultracold atoms and trapped ions. These platforms proved to be uniquely suited for probing non-equilibrium behavior of interacting quantum systems. From statistical mechanics, we expect that a non-equilibrium system will thermalize, settling to a state of thermodynamic equilibrium. Surprisingly, there are classes of systems which do not follow this expectation. I will give examples of systems which avoid thermalization, thanks to disorder-induced localization and quantum scarring.

Scientific Areas: 
 

 

Thursday Oct 22, 2020
Speaker(s): 

I will discuss the recent Hamiltonian derivation of dual BMS charges at null infinity using the first order formalism.  More generally, I will discuss how this idea can be used to classify asymptotic charges in gravity.

Collection/Series: 
Scientific Areas: 

Pages