Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In order to solve the problem of quantum gravity, we first need to pose the problem. In this talk I will argue that the problem of quantum gravity arises already in the domain of quantum mechanics and the relativity principle. Specifically, the relativity principle implies that the concept of inertial motion should extend also to those systems that are in quantum superpositions of inertial motions. By contrast, relativistic quantum field theory only considers the point of view of classical observers in states of definite relative motion (i.e.
In this talk, I will address a major conceptual and technical concern of non-perturbative quantum gravity: the quantum superposition of causal structures of space-times. I will discuss a class of theories that can address the problem, their flaws, and their relation to general relativity.
The Wigner-Eckart theorem is a well known result for tensor operators of SU(2) and, more generally, any compact Lie group. I will show how it can be generalised to arbitrary Lie groups, possibly non-compact. The result relies on the knowledge of recoupling theory between finite-dimensional and arbitrary admissible representations, which may be infinite-dimensional; the particular case of the Lorentz group will be studied in detail.
I will describe some of the recent progress in quantum query complexity, including super-quadratic separations between classical and quantum measures for total functions, a better understanding of the power of some lower bound techniques, and insight into when we should expect exponential quantum speedups for partial functions.
Recent explorations of the space of quantum field theories have provided novel topological and geometric information about this space. This voyage has resulted in the solution of some long-standing questions: the computation of sought-after topological invariants (Gromov-Witten invariants) by a new physics-based approach, the first instance of exact correlation functions in a four-dimensional QFT and the unearthing of the action of dualities on the basic observables of three dimensional gauge theories.
I will explain and prove the statement of the title. The proof relies on a recent result of Slofstra in combinatorial group theory and the hypergraph approach to contextuality.
Based on http://arxiv.org/abs/1607.05870.